25 research outputs found

    Platinum biogeochemical cycles in coastal environments

    No full text
    Le platine (Pt) est un élément technologique critique (ETC) et un contaminant émergent dans les compartiments environnementaux. Peu de données existent concernant ses concentrations, sa distribution et sa dynamique dans le milieu naturel. Ce travail combine des résultats d'expérimentation en laboratoire à des observations de terrain afin d'étudier la biogéochimie de Pt dans les systèmes côtiers (Océan Atlantique et Méditerranée). Une expérimentation exposant des huîtres à une large gamme de concentrations de Pt a produit les premières données de cinétique d’accumulation de Pt dans les bivalves marins et reflète l’assimilation de Pt constatée in situ. À des niveaux d’expositions réalistes (50 et 100 ng.L-1), la relation linéaire positive entre les niveaux d'exposition et celles des tissus justifie l'utilisation des huîtres comme sentinelles des niveaux de Pt dans l’eau de mer. À forts niveaux de Pt (10 000 ng.L-1), des effets délétères sur l’état physiologique des huîtres (e.g. augmentation du stress oxydatif et mobilisation du stock énergétique) sont observés. A partir d’études de terrain dans des sites contrastés les bruits de fond géochimiques régionaux dans l’eau de mer des côtes atlantique et méditerranéenne (0,05 ng.L-1 et 0,08 ng.L-1 respectivement) et les facteurs de bioconcentration dans le phytoplancton (~ 10^4) et dans les bivalves (huîtres et moules, ~ 10^3) ont été établis. La répartition spatiale des niveaux de Pt dans l’eau de mer, le plancton et les bivalves reflète une contamination plus élevée de la côte nord-ouest méditerranéenne, particulièrement dans les zones semi-fermées et fortement urbanisées / industrialisées (baie de Toulon et port de Gênes). Les enregistrements historiques dans les sédiments (~ 1900 - 2010) et dans les bivalves (1980 à aujourd’hui) en Gironde et de la baie de Toulon ont montré une contamination ancienne de Pt liée aux activités industrielles (métallurgie, raffinage du pétrole, charbon), tandis que la forte augmentation récente provient de sources émergentes telles que les pots catalytiques, les rejets hospitaliers et les eaux usées. L’observation à haute résolution temporelle de la distribution de Pt entre la phase dissoute et particulaire et des paramètres environnementaux majeurs (O2, salinité, Chl-a, nutriments etc.), suggèrent l’importance des processus biogéochimiques, comprenant la production et dégradation du phytoplancton, dans le comportement et le devenir du Pt en milieu côtier.Platinum (Pt) is a Technology-Critical Element (TCE) and an emerging contaminant increasingly released into all Earth compartments, but its environmental occurrence, distribution, and dynamics are under- documented. The present research combines laboratory observations and field monitoring studies on Pt biogeochemistry in coastal systems (Atlantic Ocean and northwestern Mediterranean Sea), including its distribution between seawater, particles, and living organisms. Exposure experiments with oysters facing a wide range of exposure levels provide the first Pt accumulation kinetics in marine bivalves, supporting uptake of Pt from seawater in line with field observations. At environmentally-relevant Pt levels (50 and 100 ng.L-1), the positive linear relation between exposure and Pt accumulation in tissues justifies the use of oysters as integrative sentinels for seawater Pt contamination. At relatively high Pt levels (10,000 ng.L-1), deleterious physiological effects (e.g. increased oxidative stress and energetic stock mobilization) occurred in oysters. Field observations at contrasting sites have provided regional background Pt concentrations in seawater in the Atlantic and Mediterranean coasts (0.05 ng.L-1 and 0.08 ng.L-1, respectively) and bioconcentration factors for phytoplankton (~ 104), and bivalves (oysters and mussels ~ 103). Spatial distribution of Pt levels in seawater, plankton and bivalves suggest higher contamination along the northwestern Mediterranean coast, especially in semi-enclosed, industrialized/urbanized systems (Toulon Bay and Genoa Harbor). Historical records in sediments (~ 1900 - 2010) and bivalves (1980 to present) from the Gironde watershed and the Toulon Bay showed past Pt contamination due to industrial (metallurgic, oil-refining, coal) activities, whereas the strong recent increase in Pt contamination originates from emerging Pt sources, e.g. car catalytic converters, hospital effluents, and sewage. High temporal resolution observation of Pt partitioning, together with environmental master variables (O2, Salinity, Chl-a, nutrients etc.), suggests that in coastal systems, biogeochemical processes including phytoplankton production and degradation may play an important role in Pt behavior and fate

    Cycles biogéochimiques du platine dans les environnements côtiers

    No full text
    Platinum (Pt) is a Technology-Critical Element (TCE) and an emerging contaminant increasingly released into all Earth compartments, but its environmental occurrence, distribution, and dynamics are under- documented. The present research combines laboratory observations and field monitoring studies on Pt biogeochemistry in coastal systems (Atlantic Ocean and northwestern Mediterranean Sea), including its distribution between seawater, particles, and living organisms. Exposure experiments with oysters facing a wide range of exposure levels provide the first Pt accumulation kinetics in marine bivalves, supporting uptake of Pt from seawater in line with field observations. At environmentally-relevant Pt levels (50 and 100 ng.L-1), the positive linear relation between exposure and Pt accumulation in tissues justifies the use of oysters as integrative sentinels for seawater Pt contamination. At relatively high Pt levels (10,000 ng.L-1), deleterious physiological effects (e.g. increased oxidative stress and energetic stock mobilization) occurred in oysters. Field observations at contrasting sites have provided regional background Pt concentrations in seawater in the Atlantic and Mediterranean coasts (0.05 ng.L-1 and 0.08 ng.L-1, respectively) and bioconcentration factors for phytoplankton (~ 104), and bivalves (oysters and mussels ~ 103). Spatial distribution of Pt levels in seawater, plankton and bivalves suggest higher contamination along the northwestern Mediterranean coast, especially in semi-enclosed, industrialized/urbanized systems (Toulon Bay and Genoa Harbor). Historical records in sediments (~ 1900 - 2010) and bivalves (1980 to present) from the Gironde watershed and the Toulon Bay showed past Pt contamination due to industrial (metallurgic, oil-refining, coal) activities, whereas the strong recent increase in Pt contamination originates from emerging Pt sources, e.g. car catalytic converters, hospital effluents, and sewage. High temporal resolution observation of Pt partitioning, together with environmental master variables (O2, Salinity, Chl-a, nutrients etc.), suggests that in coastal systems, biogeochemical processes including phytoplankton production and degradation may play an important role in Pt behavior and fate.Le platine (Pt) est un élément technologique critique (ETC) et un contaminant émergent dans les compartiments environnementaux. Peu de données existent concernant ses concentrations, sa distribution et sa dynamique dans le milieu naturel. Ce travail combine des résultats d'expérimentation en laboratoire à des observations de terrain afin d'étudier la biogéochimie de Pt dans les systèmes côtiers (Océan Atlantique et Méditerranée). Une expérimentation exposant des huîtres à une large gamme de concentrations de Pt a produit les premières données de cinétique d’accumulation de Pt dans les bivalves marins et reflète l’assimilation de Pt constatée in situ. À des niveaux d’expositions réalistes (50 et 100 ng.L-1), la relation linéaire positive entre les niveaux d'exposition et celles des tissus justifie l'utilisation des huîtres comme sentinelles des niveaux de Pt dans l’eau de mer. À forts niveaux de Pt (10 000 ng.L-1), des effets délétères sur l’état physiologique des huîtres (e.g. augmentation du stress oxydatif et mobilisation du stock énergétique) sont observés. A partir d’études de terrain dans des sites contrastés les bruits de fond géochimiques régionaux dans l’eau de mer des côtes atlantique et méditerranéenne (0,05 ng.L-1 et 0,08 ng.L-1 respectivement) et les facteurs de bioconcentration dans le phytoplancton (~ 10^4) et dans les bivalves (huîtres et moules, ~ 10^3) ont été établis. La répartition spatiale des niveaux de Pt dans l’eau de mer, le plancton et les bivalves reflète une contamination plus élevée de la côte nord-ouest méditerranéenne, particulièrement dans les zones semi-fermées et fortement urbanisées / industrialisées (baie de Toulon et port de Gênes). Les enregistrements historiques dans les sédiments (~ 1900 - 2010) et dans les bivalves (1980 à aujourd’hui) en Gironde et de la baie de Toulon ont montré une contamination ancienne de Pt liée aux activités industrielles (métallurgie, raffinage du pétrole, charbon), tandis que la forte augmentation récente provient de sources émergentes telles que les pots catalytiques, les rejets hospitaliers et les eaux usées. L’observation à haute résolution temporelle de la distribution de Pt entre la phase dissoute et particulaire et des paramètres environnementaux majeurs (O2, salinité, Chl-a, nutriments etc.), suggèrent l’importance des processus biogéochimiques, comprenant la production et dégradation du phytoplancton, dans le comportement et le devenir du Pt en milieu côtier

    Technology-critical elements

    No full text
    38 pagesThis chapter will review the available data in relation to selected technology-critical elements (TCEs: Pd, Pt, Nb, Ta, Ga, In, Ge, Te), describing their specific properties and sources, their fate and distribution in the marine environment and their interactions with marine biota. The study of this group of contaminants of emerging concern is relevant due to their increasing use in many recent technological and energy-related applications, leading to increasing anthropogenic emissions. As a consequence, the concentrations of most of these elements are increasing in all environmental compartments, and ecotoxicological studies have already proven the adverse physiological effects of these elements following exposure to marine organisms. Yet, the available information about the TCEs is still scattered and not easily accessible to the specialized audience. This review may facilitate readers with a comprehensive view of the current state of knowledge on this subject, addressing the environmental behavior and potential impact of the TCEsN

    Newly designed gel-integrated nanostructured gold-based interconnected microelectrode arrays for continuous in situ arsenite monitoring in aquatic systems

    No full text
    This work presents the development, characterization and field validation of newly designed gel-integrated nanostructured gold-basedmicroelectrode arrays (Au-GIMEs) enabling the direct detection of inorganic arsenite (As(III)) in fresh and marine aquatic systems. They consist of renewable Au nanoparticles (AuNP) or Au nanofilaments (AuNF) electroplated on 100- to 500- interconnected iridium (Ir)-based microdisk arrays and covered with a gel. The gel protects the sensor surface from fouling and ensures that mass transport of analytes toward the sensor surface is by diffusion only, and therefore independent of the ill-controlled hydrodynamic conditions of the media. The responses of these sensors to direct Square Wave Anodic Stripping Voltammetry (SWASV) quantification of As(III) at pH 7.6 were investigated first in 0.1 M NaNO3, then in fresh and marine water samples. The analytical responses were found to be correlated to the number of interconnected microelectrodes and the morphology of the nanostructured Au deposits but independent of the media composition. The new interconnected AuNF-GIME have sub-nanomolar detection and quantification limits fulfilling the requirement for direct monitoring of As(III) in fresh and marine aquatic systems. The AuNF-GIME were incorporated in a submersible multi-channel trace metal sensing probe for remote high-resolution monitoring. Field evaluation and validation was performed during a one-week field study in the Elbe Estuary (North Germany), from which environmental data are presented

    Spatial variability of arsenic speciation in the Gironde Estuary: Emphasis on dynamic (potentially bioavailable) inorganic arsenite and arsenate fractions

    No full text
    Inorganic arsenic (As) speciation and behaviour were studied in the Gironde Estuary, a major European estuary in the south west of France. For the first time ever, the dynamic (potentially bioavailable) fraction of inorganic arsenite, As(III), and arsenate, As(V), were quantified in this estuary, using an antifouling gel-integrated gold microelectrode interrogated by square wave anodic stripping voltammetry (GIME-SWASV). The concentrations of dissolved As(III) and As(V) were determined by hydrid generation-flow injection-atomic absorption spectrometry (HG-FI-AAS) and inductively coupled plasma-mass spectrometry (ICP-MS) in collected samples following filtration through 0.2 μm, as well as 0.02 μm pore size filters. The concentrations of arsenite in the dynamic fraction, As(III)dyn, ranged from 1.3 to 3.3 nM, contributing almost completely to the dissolved arsenite, As(III)diss, which ranged between 0.9 and 3.1 nM in the 0.2 μm fraction, and between 1.2 and 3.7 nM in the 0.02 μm fraction. Concentrations of arsenate in the dynamic fraction, As(V)dyn, ranged from 0.9 to 22.9 nM, and contributed to the dissolved arsenate, As(V)diss, by 4–73% in the 0.2 μM fraction, and by 5–90% in the 0.02 μm fraction. The concentrations of As(V)diss in the 0.2 μm fraction were between 14.5 and 36.2 nM, and between 15.2 and 34.9 nM in the 0.02 μm fraction. The impact of this work is two-fold. Measurements of As species with different techniques allowed one to validate the on-board GIME voltammetric measurements. In addition, determination of As species in different fractions, as well as combining the obtained results with the conducted measurements of dissolved Mn and Fe, particulate suspended matters, and master physicochemical parameters (T, pH, O2, redox E), helped to broaden the understanding of biotic and abiotic processes governing the distribution of arsenic, especially its potentially bioavailable forms, in the Gironde Estuary

    Speciation of Cu, Cd, Pb and Zn in a contaminated harbor and comparison to environmental quality standards

    No full text
    The water column of harbors contains significant amounts of (priority) hazardous trace metals that may be released into coastal areas of high societal and economic interests where they may disturb their fragile equilibria. To deepen our understanding of the processes that influence the transport of the various metal fractions and allow for a more rigorous environmental risk assessment, it is important to spatially monitor the relevant chemical speciation of these metals. It is of particular interest to assess their so-called dynamic fraction, which comprises the dissolved chemical forms that are potentially bioavailable to living organisms. In this study this was achieved in the Genoa Harbor (NW Italy) for copper (Cu), lead (Pb), cadmium (Cd) and zinc (Zn) by applying a multi-method approach. For the first time in this system the dynamic fractions of the target metals (CuDyn, CdDyn, PbDyn, ZnDyn) were observed in real-time on-board by voltammetry using innovative electrochemical sensing devices. Trace metals in the operationally defined dissolved &lt;0.2 μm and &lt;0.02 μm fractions were equally quantified through sampling/laboratory-based techniques. The obtained results showed a clear spatial trend for all studied metals from the enclosed contaminated part of the harbor towards the open part. The highest CuDyn and CdDyn fractions were found in the inner part of the harbor while the highest PbDyn fraction was found in the open part. The proportion of ZnDyn was negligible in the sampled area. Small and coarse colloids were involved in Cu, Cd and Zn partitioning while only coarse colloids played an important role in Pb partitioning. The determined concentrations were compared to the Environmental Quality Standards (EQS) established by the EU and those determined by the Australia and New Zealand to trigger for 99 and 95% species protection values. The results of this work allow us to highlight gaps in the EQS for which metal concentration thresholds are excessively high or non-existent and should urgently be revised. They also reflect the need to quantify the potentially bioavailable fraction of hazardous trace metals instead of just their total dissolved concentrations. The data support the establishment of environmental quality standards and guidelines based on realistic risk assessment to protect aquatic life and resources and ultimately human health.</p

    In Situ Voltammetric Sensor of Potentially Bioavailable Inorganic Mercury in Marine Aquatic Systems Based on Gel-Integrated Nanostructured Gold-Based Microelectrode Arrays

    No full text
    International audienceThe development and field validation of newly designed nanostructured gold-plated gel-integrated microelectrode (Au-GIME) arrays applied to the direct in situ square wave anodic stripping voltammetry (SWASV) quantification of the potentially bioavailable inorganic mercury (Hg(II)) species in the coastal area are presented. The Au-GIME consists of arrays of 100–500 interconnected iridium (Ir)-based microdisks that are electroplated with renewable Au nanoparticles (AuNPs) or Au nanofilaments (AuNFs) and covered with an agarose gel. The gel protects the sensor surface from fouling and ensures that mass transport of analytes toward the sensor surface is by pure diffusion only and therefore independent of the ill-controlled convective conditions of the media. The responses of these sensors to direct SWASV measurements of inorganic Hg(II) at near-neutral pH were investigated first in synthetic media and then in UV-irradiated marine samples. The analytical responses were found to be correlated to the number of interconnected microelectrodes and the morphology of the nanostructured Au deposits and independent of the media composition for chloride concentration ≥0.2 M (salinity S ≥ 13) and pH ranging from 7 to 8.5. The AuNF-GIMEs have detection and quantification limits at a low pM level, fulfilling the requirement of sentinel tools for real-time monitoring of the dynamic fraction of Hg(II) in coastal area. The AuNF-GIMEs were incorporated in an in-house advanced multichannel sensing probe for remote in situ high-resolution trace metal monitoring. Field evaluation and validation were successfully performed as a part of a field study in Arcachon Bay (France), from which environmental data are presented. This work marks the first time that an autonomous electrochemical sensing probe successfully measures Hg(II) and its hourly temporal variation in situ without chemical modification of the sampl

    Organotropism and biomarker response in oyster Crassostrea gigas exposed to platinum in seawater

    Get PDF
    International audiencePlatinum (Pt) is a technology critical element (TCE) for which biogeochemical cycles are still poorly understood. This lack of knowledge includes Pt effects on marine organisms, which proved to be able to bioconcentrate this trace element. Oysters Crassostrea gigas were exposed to stable Pt isotope spiked daily in seawater for 35 days. Seawater was renewed daily and spiked (with Pt(IV)) to three nominal Pt concentrations (50, 100, and 10,000 ng L−1) for two replicate series. Organotropism study revealed that gills, and to a lesser extent mantle, are the key organs regarding Pt accumulation, although a time- and concentration-dependent linear increase in Pt levels occurred in all the organs investigated (i.e., digestive gland, gonads, gills, mantle, and muscle). In oysters exposed to Pt concentrations of 10,000 ng L−1, significant biomarker impairments occurred, especially at cellular levels. They reflect altered lipofuscin and neutral lipid contents, as well as intralysosomal metal accumulation. These observations were attributed to activation of excretion/detoxification mechanisms, including Pt elimination through feces and clearly support the importance of the digestive gland in the response to direct Pt exposure. Despite relatively constant condition index, the integrative biological response (IBR) index suggests a generally decreasing health status of oyster

    Estuarine dissolved speciation and partitioning of trace metals: a novel approach to study biogeochemical processes

    No full text
    Estuaries are complex systems involving numerous biogeochemical gradients and processes that influence the behavior of trace metals. Lead (Pb), cadmium (Cd), and copper (Cu) speciation and partitioning were studied in the Gironde Estuary (SW France), using a multi-method approach in which data from innovative sensors and laboratory-based techniques were combined. For the first time in this system, the so-called dynamic fractions of the target metals (dissolved forms that are potentially bioavailable) were recorded on-board through voltammetry using unique antifouling gel-integrated microelectrode arrays (GIME) incorporated in a submersible sensing probe (TracMetal). Trace metals in the operationally defined dissolved <0.2 μm and <0.02 μm fractions, as well as complexed with suspended particles (collected after centrifugation) were quantified through sampling/laboratory-based techniques. High spatial resolution trace metal concentrations were monitored along the salinity gradient (S = 0.10 to S = 34.0) together with master bio-physicochemical parameters providing robust cruise-specific information on how well-known abiotic and biotic processes control the Gironde estuarine trace element partitioning, (i.e. conservative behavior, addition/removal). Combining conventional methods with GIME measurements showed: (i) the dominance of Cd dynamic species in the intra-estuarine total dissolved fraction (up to 90%), (ii) the importance of small colloids as trace metal carrier phases, desorbing and complexing dynamic fractions of Pb and Cu, and (iii) the potential influence of photo-redox processes remobilizing Pb under their dynamic forms (up to 80%). Data also suggest trace metal release/sorption by phytoplankton with an increase of dissolved Cu concentrations in the riverine branch, as well as Cu and Cd particulate concentrations showing higher levels towards productive coastal waters. This complete approach allowed to monitor key estuarine biogeochemical processes and highlighted the valuable use of the TracMetal to record subtle variations of potentially bioavailable dissolved metal fractions
    corecore