1,452 research outputs found

    Small-Angle Scattering and Diffusion: Application to Relativistic Shock Acceleration

    Get PDF
    We investigate ways of accurately simulating the propagation of energetic charged particles over small times where the standard Monte Carlo approximation to diffusive transport breaks down. We find that a small-angle scattering procedure with appropriately chosen step-lengths and scattering angles gives accurate results, and we apply this to the simulation of propagation upstream in relativistic shock acceleration.Comment: 4 pages, 2 figures, proceedings of World Space Environment Forum (WSEF2002) to appear in Space Science Reviews, accepte

    Particle-in-cell simulation of a mildly relativistic collision of an electron-ion plasma carrying a quasi-parallel magnetic field: Electron acceleration and magnetic field amplification at supernova shocks

    Full text link
    Plasma processes close to SNR shocks result in the amplification of magnetic fields and in the acceleration of electrons, injecting them into the diffusive acceleration mechanism. The acceleration of electrons and the B field amplification by the collision of two plasma clouds, each consisting of electrons and ions, at a speed of 0.5c is investigated. A quasi-parallel guiding magnetic field, a cloud density ratio of 10 and a plasma temperature of 25 keV are considered. A quasi-planar shock forms at the front of the dense plasma cloud. It is mediated by a circularly left-hand polarized electromagnetic wave with an electric field component along the guiding magnetic field. Its propagation direction is close to that of the guiding field and orthogonal to the collision boundary. It has a low frequency and a wavelength that equals several times the ion inertial length, which would be indicative of a dispersive Alfven wave close to the ion cyclotron resonance frequency of the left-handed mode (ion whistler), provided that the frequency is appropriate. However, it moves with the super-alfvenic plasma collision speed, suggesting that it is an Alfven precursor or a nonlinear MHD wave such as a Short Large-Amplitude Magnetic Structure (SLAMS). The growth of the magnetic amplitude of this wave to values well in excess of those of the quasi-parallel guiding field and of the filamentation modes results in a quasi-perpendicular shock. We present evidence for the instability of this mode to a four wave interaction. The waves developing upstream of the dense cloud give rise to electron acceleration ahead of the collision boundary. Energy equipartition between the ions and the electrons is established at the shock and the electrons are accelerated to relativistic speeds.Comment: 16 pages, 18 figures, Accepted for publication by Astron & Astrophy

    New perspectives on the potential role of aquaporins (AQPs) in the physiology of inflammation

    Get PDF
    Aquaporins (AQPs) are emerging, in the last few decades, as critical proteins regulating water fluid homeostasis in cells involved in inflammation. AQPs represent a family of ubiquitous membrane channels that regulate osmotically water flux in various tissues and sometimes the transport of small solutes, including glycerol. Extensive data indicate that AQPs, working as water channel proteins, regulate not only cell migration, but also common events essential for inflammatory response. The involvement of AQPs in several inflammatory processes, as demonstrated by their dysregulation both in human and animal diseases, identifies their new role in protection and response to different noxious stimuli, including bacterial infection. This contribution could represent a new key to clarify the dilemma of host-pathogen communications, and opens up new scenarios regarding the investigation of the modulation of specific AQPs, as target for new pharmacological therapies. This review provides updated information on the underlying mechanisms of AQPs in the regulation of inflammatory responses in mammals and discusses the broad spectrum of options that can be tailored for different diseases and their pharmacological treatment

    Aquaporins in health and disease: An overview focusing on the gut of different species

    Get PDF
    Aquaporins (AQPs) play a pivotal role in gut homeostasis since their distribution and function is modulated both in physiological and in pathophysiological conditions. The transport of water and solutes through gut epithelia is essential for osmoregulation and digestive and absorptive functions. This passage is regulated by different AQP isoforms and characterized by their peculiar distribution in the gastrointestinal tract. To date, AQP localization has been identified in the gut and associated organs of several mammalian species by different techniques (immunohistochemical, western blotting, and RT-PCR). The present review describes the modulation of AQP expression, distribution, and function in gut pathophysiology. At the same time, the comparative description of AQP in animal species sheds light on the full range of AQP functions and the screening of their activity as transport modulators, diagnostic biomarkers, and drug targets. Moreover, the phenotype of knockout mice for several AQPs and their compensatory role and the use of specific AQP inhibitors have been also reviewed. The reported data could be useful to design future research in both basic and clinical fields

    Solving Nonlinear Systems of Equations Via Spectral Residual Methods: Stepsize Selection and Applications

    Get PDF
    Spectral residual methods are derivative-free and low-cost per iteration procedures for solving nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual vector is used as the search direction and choosing the steplength has a crucial impact on the performance. In this work we address both theoretically and experimentally the steplength selection and provide results on a real application such as a rolling contact problem

    Microbial CR(VI) reduction in indigenous culture of bacteria: characterization and modelling

    Get PDF
    South Africa currently faces multiple Cr(VI) contamination problems which are unsuccessfully remediated using available technologies. Cr(VI) is highly toxic, carcinogenic and mutagenic in nature and it is exclusively released through anthropogenic activities. A new treatment approach is proposed using locally isolated Cr(VI) reducing species of bacteria. This method is envisioned to be economical and ecologically friendly. Indigenous chromium(VI) reducing bacteria (CRBs) were isolated from a dried sludge consortium collected in the Brits Wastewater Treatment Plant, North-West Province (South Africa). Characterisation using 16S rRNA fingerprinting followed by taxonomic studies revealed a wide diversity of CRBs isolated under anaerobic conditions than under aerobic conditions. The consortium was determined to be predominantly gram-positive. The Cr(VI) reducing component of the culture was determined to be predominantly facultative, consisting predominantly of Bacillus sp., i.e. B. cereus, B. thuringiensis and B. mycoides. Batch experiments under both aerobic and anaerobic conditions showed a high Cr(VI) reducing performance under relatively high initial Cr(VI) concentrations. The reduction rate using this culture was 3 to 8 times higher than reduction rates reported in bacteria previously isolated and studied in North America and Europe. The culture performed best as a consortium with the different species operating cooperatively. The bacteria were acclimated to Cr(VI) toxicity through the long period of contact during the activated sludge treatment process at the source. A Monod like model was used to evaluate the rate of Cr(VI) reduction over a wide range of initial Cr(VI) concentrations. The model revealed that Cr(VI) reduction in the consortium culture followed quasi-first order kinetics with a Cr(VI) inhibitor term as a second exponential: C = C0 . exp [-p . exp (-q . C0 ) . t]. The parameter p and q for the semi-empirical first order model were statistically accurate with R2 values greater than 94% for all data ranges evaluated. Previous studies were not able to pick the variability of Monod coefficients, kmc and Kc, since at narrow ranges of initial Cr(VI) concentrations, the impact of the chromium toxicity variability was insignificant. This study demonstrates the potential of a biological approach using locally isolated Cr(VI) reducing bacteria to decontaminate Cr(VI) polluted sites in South Africa.Dissertation (MSc)--University of Pretoria, 2009.Chemical Engineeringunrestricte

    Rendering of Pressure and Textures Using Wearable Haptics in Immersive VR Environments

    Get PDF
    Haptic systems have only recently started to be designed with wearability in mind. Compact, unobtrusive, inexpensive, easy-to-wear, and lightweight haptic devices enable researchers to provide compelling touch sensations to multiple parts of the body, significantly increasing the applicability of haptics in many fields, such as robotics, rehabilitation, gaming, and immersive systems. In this respect, wearable haptics has a great potential in the fields of virtual and augmented reality. Being able to touch virtual objects in a wearable and unobtrusive way may indeed open new exciting avenues for the fields of haptics and VR. This work presents a novel wearable haptic system for immersive virtual reality experiences. It conveys the sensation of touching objects made of different materials, rendering pressure and texture stimuli through a moving platform and a vibrotactile abbrv-doi-hyperref-narrowmotor. The device is composed of two platforms: one placed on the nail side of the finger and one in contact with the finger pad, connected by three cables. One small servomotor controls the length of the cables, moving the platform towards or away from the fingertip. One voice coil actuator, embedded in the platform, provides vibrotactile stimuli to the user

    Active Galactic Nuclei with Starbursts: Sources for Ultra High Energy Cosmic Rays

    Get PDF
    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst in the radio galaxy Cen A pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across most of the sky.Comment: 4 pages, 1 figure, proceedings of "High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources", Heidelber

    Residual vein thrombosis and onset of post-thrombotic syndrome: Influence of the 4G/5G polymorphism of plasminogen activator inhibitor-1 gene

    Get PDF
    BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1) is the most important inhibitor of plasminogen activator. The functional 4G/5G polymorphism of the gene coding for PAI-1 may affect PAI-1 plasmatic activity, influencing the imbalance between coagulation and fibrinolysis cascades. In this prospective cohort analytic study, we investigated the role of this single nucleotide polymorphism in the persistence of thrombotic lesion and the occurrence of post-thrombotic syndrome. PATIENTS/METHODS: In a group of 168 patients with post-surgical deep vein thrombosis of the legs, we analyzed the 4G/5G polymorphism in the promoter of PAI-1 gene and plasmatic PAI-1 activity. Enrolled patients were divided in two groups: patients with 4G/5G polymorphism and increased PAI-1 activity (n=85) and patients without 4G/5G polymorphism and normal PAI-1 activity (n=83). All patients were treated according to current protocols and re-examined after 3, 12 and 36months in order to evaluate the persistence of thrombotic lesion and the occurrence of post-thrombotic syndrome. RESULTS: We found a significantly increased PAI activity in carrier of the 4G allele, who experienced much more frequently a persistence of thrombosis after 3, 12 and 36months and/or the development of post-thrombosis syndrome, in spite of the anticoagulant treatment. CONCLUSIONS: These data not only confirm the role played by PAI-1 activity and by the 4G/5G SNP of the PAI-1 gene, but also suggest that current therapeutic protocols, recommending the administration of low weight molecular heparin and oral anticoagulant for the treatment of deep vein thrombosis, could be non sufficient for patients genetically predisposed to a less efficient clot lysis
    • 

    corecore