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Abstract. We investigate ways of accurately simulating the propagation of ener-
getic charged particles over small times where the standard Monte Carlo approx-
imation to diffusive transport breaks down. We find that a small-angle scattering
procedure with appropriately chosen step-lengths and scattering angles gives ac-
curate results, and we apply this to the simulation of propagation upstream in
relativistic shock acceleration.
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1. Introduction

Relativistic charged particle transport in magnetized astro-physical
plasma is strongly affected by magnetic irregularities, and may be
approximated by diffusion. Diffusive transport of particles having speed
v can be simulated by a three-dimensional random walk with steps sam-
pled from an exponential distribution with mean free path λ = 3D/v,
where D (cm2 s−1) is the spatial diffusion coefficient, followed by large-
angle (isotropic) scattering after each step (e.g. Chandrasekhar 1943),
and this gives good results for distances much larger than λ.

In diffusive shock acceleration at relativistic shocks problems arise
when simulating particle motion upstream of the shock because the
particle speeds, v, and the shock speed vshock = c(1 − 1/γ2

shock)1/2 are
both close to c, and so very small deflections are sufficient to cause
a particle to re-cross the shock. Clearly, Monte Carlo simulation by
a random walk with mean free path λ and large-angle scattering is
inappropriate here, and in Monte Carlo simulations of relativistic shock
acceleration at parallel shocks Achterberg et al. (2001) consider instead
the diffusion of a particle’s direction for a given angular diffusion coeffi-
cient Dθ (rad2 s−1). Similarly, for a given spatial diffusion coefficient D,
Protheroe (2001) and Meli & Quenby (2001) adopt a random walk with
a smaller mean free path, ℓ̄ ≪ λ, followed by scattering at each step
by a small angle with mean deflection , θ̄ < 1/γshock. See Bednarz &
Ostrowski (2001) for a recent review of relativistic shock acceleration.
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2. Small-angle scattering and diffusion

We consider propagation by small steps sampled from an exponential
distribution with mean ℓ̄ ≪ λ, followed at each step by scattering
by a small angle sampled from an exponential distribution with mean
θ̄ ≪ π. The change in direction (θ1, θ2) may then be described as two-
dimensional diffusion with angular diffusion coefficient Dθ = θ̄vθ/2
(rad2 s−1) where vθ = θ̄/t̄, and t̄ = ℓ̄/v such that Dθ = θ̄2v/(2ℓ̄). The
time tiso, which gives rise to a deflection equivalent to a large-angle
(isotropic) scattering, is determined by (σ2

θ1
+ σ2

θ2
)1/2 =

√
4Dθtiso ∼

π/2, giving λ ∼ vtiso ∝ ℓ̄/θ̄2 and a spatial diffusion coefficient D ∝
ℓ̄v/θ̄2 ∝ v2/Dθ. By using a Monte Carlo method it is straightforward
to test this, determine the constant of proportionality, and thereby
make the connection between diffusion and small angle scattering.

The solution of the diffusion equation for a delta-function source
in position and time q(~r, t) = δ(~r)δ(t) and an infinite diffusive medium
is a three-dimensional gaussian with standard deviation σ =

√
2Dt

(Chandrasekhar 1943). The results from several Monte Carlo random
walk simulations are shown in Fig. 1, from which we find that the
expected dependence occurs for θ̄ < 5◦ at times t > 105 ℓ̄/v. For this
case, we see from Fig. 1 that σ2 → 2tvℓ̄/3θ̄2, and so we obtain the
connection between small-angle scattering and diffusion theory, namely
D ≈ ℓ̄v/(3θ̄2) ≈ v2/(6Dθ).

3. Application to relativistic shock acceleration

As viewed in the frame of reference of the upstream plasma, ultra-
relativistic particles are only able to cross the shock from downstream
to upstream if the angle θ between their direction and the shock nor-
mal pointing upstream is θ < sin−1(1/γshock), where γshock = (1 −
β2

shock)
−1/2 and βshock = vshock/c. For highly relativistic shocks these

particles cross the shock from downstream to upstream travelling al-
most parallel to the shock normal. Similarly, having crossed the shock,
only a very slight angular deflection, by ∼ 1/γshock is sufficient to return
them downstream of the shock. This change in particle direction gives
rise to a change in particle energy E′ and momentum p′, measured in
the downstream plasma frame (primed coordinates), of

E′

n+1

E′

n

≈
p′n+1

p′n
=

1 − β12 cos θn+1

1 − β12 cos θn
(1)

in an acceleration cycle (downstream → upstream → downstream),
where β12 is the speed of the upstream plasma as viewed from the
downstream frame.
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Figure 1. σ2 vs. time for a 3D random walk with isotropic injection at the origin
at t = 0. Step-lengths ℓ were sampled from an exponential distribution with mean
ℓ̄ followed by small-angle scattering with scattering angle θ sampled from an expo-
nential distribution with mean θ̄ (the numbers attached to the curves). Dashed line
is σ2 = 2tvℓ̄/3θ̄2. Curves for 5◦–20◦ result from 104 simulations; 4◦ curve results
from 8 × 104 simulations (width shows statistical error).

In “parallel shocks” the magnetic field is parallel to the shock
normal, and so the the pitch angle ψ is the angle to the shock normal
and v cosψ gives the component of velocity parallel to the shock. Thus
the small-angle scattering method described in the previous section is
used here to simulate particle motion upstream of a parallel relativistic
shock, including the effects of pitch-angle scattering, for a given diffu-
sion coefficient. We inject ultra-relativistic particles at the shock with
downstream-frame energy E′

0 travelling upstream parallel to the shock
normal, i.e. θ0 = 0. We follow a particle’s trajectory until the shock
catches up with it, and it crosses from upstream to downstream with
an upstream-frame angle θ1 to the shock normal and a downstream-
frame energy E′

1. The simulation was performed for γshock = 10, and
five different mean scattering angles θ̄, to determine the maximum θ̄-
value that can safely be used for accurate simulation. The resulting
distributions of cos θ and log(E′

1/E
′

0) are shown in Fig. 2, and show
that in this application one requires θ̄ < 0.1/γshock. Our results are
quite consistent with those of Achterberg et al. (2001), who used a
diffusive angular step ∆θst ≤ 0.1/γshock.
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a. cos θ1 distribution b. log(E′

1/E′

0) distribution

Figure 2. Small-angle scattering simulation of excursion upstream in diffusive shock
acceleration at a parallel relativistic shock with γshock = 10. Results are shown
for 105 injected particles and θ̄ = 10−2/γshock (top histogram), 3 × 10−2/γshock,
10−1/γshock, 0.3/γshock, 1/γshock and 3/γshock (bottom histogram). Note that the
top three histograms are almost indistinguishable.

4. Conclusion

The standard Monte Carlo random walk approach to simulation of
energetic charged particle propagation for a given spatial diffusion co-
efficient D can be extended to apply accurately to times much less than
λ/v = 3D/v2 by using a small-angle scattering procedure with steps
sampled from an exponential distribution with mean free path ℓ̄ = θ̄2λ
followed at each step by scattering with angular steps sampled from an
exponential distribution with mean scattering angle θ̄ < 0.09 rad (5◦).
The spatial and angular diffusion coefficients are then D ≈ ℓ̄v/(3θ̄2)
and Dθ = θ̄2v/(2ℓ̄), and are related by D ≈ v2/(6Dθ). In simulation of
upstream propagation in relativistic shock acceleration one must use
θ̄ < 0.1/γshock to obtain accurate results.

References

Achterberg, A., Gallant, Y.A., Kirk, J.G., and Guthmann, A.W.: 2001, MNRAS

328, 393.
Bednarz, J., and Ostrowski, M.: 2001, MNRAS 310, L13.
Chandrasekhar, S.: 1943, Rev. Mod. Phys. 15, 1.
Meli, A., and Quenby, J.: 2001, 27th Int. Cosmic Ray Conf. , Ed. M. Simon et al.

vol. 7, p. 2742.
Protheroe, R.J.: 2001, 27th Int. Cosmic Ray Conf. , Ed. M. Simon et al. vol. 6,

p. 2006, and p. 2014.

Protheroe.tex; 5/02/2008; 6:09; p.4


