165 research outputs found
Lidar observations and modeling of cold air outbreaks during MASEX and GALE
As part of MASEX and GALE a number of research flights were carried out over the Marine Boundary Layer (MBL) during periods when extremely cold and dry continental air was flowing out over the warm coastal waters at the east coast of the U.S. Such periods, which are named cold air outbreaks are characterized by massive warming and moistening of the MBL resulting in rapid entrainment conditions. As the MBL deepens as a function of fetch over the ocean, clouds develop. The line of cloud formation typically follows the coast line closely as has been observed many times from satellite imagery. The backscatter data from the NASA Goddard airborne lidar, which was used to measure the depth of the MBL in great detail, is ideally suited to verify parametrized models of boundary layer growth rate. The data indicates that the deepening MBL gradually develops clouds at its top. Those clouds form an integral part of the MBL and exercise an important influence on the energy cycle within the MBL. It is suggested that the rapid entrainment observed during overcast conditions represent an increase in efficiency of conversion of available turbulence kinetic energy into entrainment energy
Convective structure of the planetary boundary layer of the ocean during gale
The structure of the Planetary Boundary Layer (PBL) was measured, using an airborne lidar, over the Atlantic Ocean during several intensive observation periods of the Genesis of Atlantic Lows Experiment (GALE). Primary emphasis is on the understanding of the convective structure within the PBL during cold air outbreaks. Cold outbreaks generally occur in between the development of coastal storms; and behind a cold front sweeping down from Canada out across the Atlantic. As the cold dry air moves over the relatively warm ocean, it is heated and moistened. The transfer of latent and sensible heat during these events accounts for most of the heat transfer between the ocean and atmosphere during winter. Moistening of the PBL during these eventsis believed to be an important factor in determining the strength of development of the storm system which follows. In general, the more PBL moisture available as latent heat the higher the probability the storm will intensify. The major mechanism for vertical mixing of heat and mositure within the PBL is cellular convection. Knowlede of the organization and structure of the convection is important for understanding the process
Lower atmospheric temperature profile measurements using a Raman lidar
A Raman lidar system was used to measure the temperature profile of the upper troposphere and lower stratosphere. The system consists of a tripled Nd-YAG laser and a 1.5 meter diameter telescope. Two photomultipliers are used at the output of the telescope to allow for measurements at both the laser wavelength and at the Raman shifted wavelength due to atmospheric nitrogen. The signal from the photomultipliers is recorded as photon counts in 1 microsec bins. The results of a number of laser shots are summed together to provide atmospheric returns which have acceptable signal to noise characteristics. Measurements of the Raman nitrogen return were acquired up to an altitude in excess of 20 km. Temperature profiles were retrieved from the attenuation corrected Raman nitrogen return assuming the atmosphere to be in hydrostatic equilibrium and using the ideal gas law. Retrieved temperature profiles are shown compared with independent temperature measurements
Genesis of Atlantic Lows Experiment NASA Electra Boundary Layer Flights Data Report
The objective of this research was to obtain high resolution measurements of the height of the Marine Atmospheric Boundary Layer (MABL) during cold air outbreaks using an Airborne Lidar System. The research was coordinated with other investigators participating in the Genesis of Atlantic Lows Experiment (GALE). An objective computerized scheme was developed to obtain the Boundary Layer Height from the Lidar Data. The algorithm was used on each of the four flight days producing a high resolution data set of the MABL height over the GALE experiment area. Plots of the retrieved MABL height as well as tabular data summaries are presented
Performance modeling of ultraviolet Raman lidar systems for daytime profiling of atmospheric water vapor
We describe preliminary results from a comprehensive computer model developed to guide optimization of a Raman lidar system for measuring daytime profiles of atmospheric water vapor, emphasizing an ultraviolet, solar-blind approach
Sustainable farming with native rocks: the transition without revolution.
The development process which humanity passed through favored a series of conquests, reflected in the better quality of life and longevity, however, it also provoked upsets and severe transformation in the environment and in the human food security. Such process is driving the ecosystems to be homogeneous, and, therefore,the nutrients� supply, via nourishment. To change this panorama, the present work discusses the gains of incorporating the stonemeal technique as a strategic alternative to give back the essential fertile characteristics to the soils. This technology has the function of facilitating the rejuvenation of the soils and increasing the availability of the necessary nutrients to the full development of the plants which is a basic input for the proliferation of life in all its dimensions
Raman backscatter of laser radiation in the earth's atmosphere
Laser optical radar measurement of atmospheric Raman backscattering by nitrogen, oxygen, and water vapo
Towards More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere
Motivated by the recognition that variation in the optical transmission of
the atmosphere is probably the main limitation to the precision of ground-based
CCD measurements of celestial fluxes, we review the physical processes that
attenuate the passage of light through the Earth's atmosphere. The next
generation of astronomical surveys, such as PanSTARRS and LSST, will greatly
benefit from dedicated apparatus to obtain atmospheric transmission data that
can be associated with each survey image. We review and compare various
approaches to this measurement problem, including photometry, spectroscopy, and
LIDAR. In conjunction with careful measurements of instrumental throughput,
atmospheric transmission measurements should allow next-generation imaging
surveys to produce photometry of unprecedented precision. Our primary concerns
are the real-time determination of aerosol scattering and absorption by water
along the line of sight, both of which can vary over the course of a night's
observations.Comment: 41 pages, 14 figures. Accepted PAS
Large aperture scanning airborne lidar
A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc
Lidar Observations of Raman Scattering from S02 in a Power Plant Stack Plume
LIDAR techniques have been successfully applied to the detection of the Raman backscatter from S02 in the plume of a 200 megawatt coal-burning electrical- generating plant from a distance of 210 meters. The LIDAR system used consists of a 61-centimeter-diameter, f /4 Newtonian telescope and a 1.0-1.5-joules per pulse, 1-pulse-per-second ruby laser. Narrow band interference filters are used to select the 7546-angstrom v (sub 1) vibrational line of S02. The signal from a photomultiplier tube was sequentially applied to each 254-nanosecond-wide channel of a 15-cihannel photon counting system, resulting in a direct correlation between channel number and range increment. Photon counts were accumulated from the backscatter of a number of laser pulses (typically 50 or 100), and the accumulated counts per channel printed on paper tape. One sequence of measurements was made during a two-hour period while the plant electrical output was being reduced by approximately 50 percent. Although the Raman system had not been quantitatively calibrated, the LIDAR data correlated well with the varying plant electrical output. N2 scattering observations were also made and an approximate quantitative S02 concentration obtained by ratioing the S02 data to N2 data. This ratio compared well to the in-situ measurements made during the same period by Environmental Protection Agency sampling instruments
- …
