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Abstract

We describe preliminary results from a comprehensive computer model developed to

guide optimization of a Raman lidar system for measuring daytime profiles of

atmospheric water vapor, emphasizing an ultraviolet, solar-blind approach.
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We describe preliminary results from a comprehensive computer model under

development t... guide optimization of 7 , ultraviolet Raman lidar system for measuring

daytime profiles of atmospheric water vapor. The Raman lidar technique is a leading

candidate for providing the high-resolution, day/night profiling of water vapor that is

critical to research in global climate change. While Raman lidar is used currently to

perform meteorologically important, sustained, reliable nighttime p ► :,filing of water

vapor, daytime measurements present added challenges because of the difficulties

inherent in detecting Raman signals against solar backgrounds.

Raman lidar systems detect selected molecular species by monitoring their

corresponding wavelength-shifted backscattered Raman ren!rn signals. Solar-blind
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operation is based on choosing an excitation wavelength such that the return :signal is

in the solar-blind region of the spectrum (x, -300 nm). Background daytime radiance

drops off exwmely rapidly below 300 nm (see Fig 1), because atmospheric ozone (as

well as other gases for the shorter wavelengths) absorb practically all of the incoming

solar radiation in this region of the spectrum, providing a "black backgrourd" for

detection of the Raman signal. However, tropospheric ozone (see Fig. 1 for

absorption cross-section) also absorbs the transmitted laser beam and the

wavelength-shifted, backscattered Raman signal, reducing the range to which signals

can be detected even in the absence of any background. Thus, the optimum excitation

wavelength must be short enough to result in only a small level of background

radiation, but long enough to result in sufficient atmospheric penetration.

We are developing a detai,ed Raman lidar instrument performance model, more

comprehensive than those reported previously, 1,2 that will provide this optimum

excitation wavelength as a function of a variety of operational parameters. The model

simulates key characteristics of the lidar system, using realistic atmospheric profiles,

estimated background sky radiance, and experimentally determined values for the lidar

system parameters; model results demonstrate the tradeoffs among range,

measurement precision, and data acquisition time during daytime operation. Figure 2

displays the calculated range obtained versus wavelength in relatively clear air for P.

Raman lidar system, based on a high-average-power excimer laser, suc y . as the

instmment developed at the NASA Goddard Space Vlight Center and fielded by the

NASA/Sandia authors at the SPECTRE (Spectral Radiance Experiment) campaign in

Coffeyville, Kansas during late 1991. Measurements performed at SPECTRE using

248-nm excitation will be compared to our model calculations to guide further

development of the model, which will in turn be used to guide our development of

wavelength-shifting capabilities for providing the optimum wavelength.
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The preliminary results shown in Fig. 2 indicate that the optimum laser

excitation wavelength is in the range of 255-265 nrn. One factor that requires

significant further investigation is the influence of attenuation by the weak

("forbidden") Herzberg I molecular oxygen uv absorption bands, which could influence

signals over the several-kilometer atmospheric Faths probe: by the Daman lidar

system.. In addition, the calculation shown in Fig. 2 represents only a signal-to-noise

calculation, and does not take into account systematic effects, such as those

introduced by the strong wavelength dependence of the ozone absorption cross

section. These and other potential effects on optimum wavelength selection for solar-

blind operation are being addressed currently in model, laboratory, and field-based

lidar studies. We are also investigating the merits of a different approach for daytime

operation based on a narrow spectral bandpass, narrow field-of-view system.

This work is supported by the U. S. Department of Energy, Atmospheric

Radiation Measurement (ARM) Program, and by the NASA Radiation and Dynamics

Program.
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iFi 11 ure Ca tp inns

1. Ozone absorption cross-section and daytime sky radiance in the spectra', region

240-320 nm.

2. Observation range as a function of laser wavelength computed from the model.

This maximum range eorr^;sponds to a signal-to-noise ratio of 10 (based on

Poisson statistics) in the Raman water vapor channel. The laser output power

and lidar system parameters are assumed constant over t ;ie indicated spectral

region.
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Daytime Sky Radiance (W/M2/sr/nm)
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