1,496 research outputs found

    Revisiting the axion bounds from the Galactic white dwarf luminosity function

    Get PDF
    It has been shown that the shape of the luminosity function of white dwarfs (WDLF) is a powerful tool to check for the possible existence of DFSZ-axions, a proposed but not yet detected type of weakly interacting particles. With the aim of deriving new constraints on the axion mass, we compute in this paper new theoretical WDLFs on the basis of WD evolving models that incorporate for the feedback of axions on the thermal structure of the white dwarf. We find that the impact of the axion emission into the neutrino emission can not be neglected at high luminosities (MBol8M_{\rm Bol}\lesssim 8) and that the axion emission needs to be incorporated self-consistently into the evolution of the white dwarfs when dealing with axion masses larger than macos2β5m_a\cos^2\beta\gtrsim 5 meV (i.e. axion-electron coupling constant gae1.4×1013g_{ae}\gtrsim 1.4\times 10^{-13}). We went beyond previous works by including 5 different derivations of the WDLF in our analysis. Then we have performed χ2\chi^2-tests to have a quantitative measure of the assessment between the theoretical WDLFs ---computed under the assumptions of different axion masses and normalization methods--- and the observed WDLFs of the Galactic disk. While all the WDLF studied in this work disfavour axion masses in the range suggested by asteroseismology (macos2β10m_a\cos^2\beta\gtrsim 10 meV; gae2.8×1013g_{ae}\gtrsim 2.8\times 10^{-13}) lower axion masses can not be discarded from our current knowledge of the WDLF of the Galactic Disk. A larger set of completely independent derivations of the WDLF of the galactic disk as well as a detailed study of the uncertainties of the theoretical WDLFs is needed before quantitative constraints on the axion-electron coupling constant can be made.Comment: 17 pages, 6 figures, accepted for publication in the Journal of Cosmology and Astroparticle Physic

    Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate

    Get PDF
    Long pulse or steady state operation of fusion experiments require data acquisition and processing systems that reduce the volume of data involved. The availability of self-adaptive sampling rate systems and the use of real-time lossless data compression techniques can help solve these problems. The former is important for continuous adaptation of sampling frequency for experimental requirements. The latter allows the maintenance of continuous digitization under limited memory conditions. This can be achieved by permanent transmission of compressed data to other systems. The compacted transfer ensures the use of minimum bandwidth. This paper presents an implementation based on intelligent test and measurement system (ITMS), a data acquisition system architecture with multiprocessing capabilities that permits it to adapt the system’s sampling frequency throughout the experiment. The sampling rate can be controlled depending on the experiment’s specific requirements by using an external dc voltage signal or by defining user events through software. The system takes advantage of the high processing capabilities of the ITMS platform to implement a data reduction mechanism based in lossless data compression algorithms which are themselves based in periodic deltas

    Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-Scale Molecular Outflow

    Full text link
    In Tombesi et al. (2015), we reported the first direct evidence for a quasar accretion disk wind driving a massive molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type-1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the energetics were estimated from the optically thick OH 119 um transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of broad wings in the CO(1-0) profile derived from ALMA observations. The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ~7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) R_7^{-1} M_sun/yr, (1.5-3.0) R_7^{-1} L_AGN/c, and (0.15-0.40)% R_7^{-1} L_AGN are inferred from these data, assuming a CO-to-H_2 conversion factor appropriate for a ULIRG (R_7 is the radius of the outflow normalized to 7 kpc and L_AGN is the AGN luminosity). These rates are time-averaged over a flow time scale of 7x10^6 yrs. They are similar to the OH-based rates time-averaged over a flow time scale of 4x10^5 yrs, but about a factor 4 smaller than the local ("instantaneous"; <10^5 yrs) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow is also re-examined.Comment: 15 pages, 6 figures, 4 tables, accepted for publication in Ap

    Cold Stowage Flight Systems

    Get PDF
    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions

    Effects of a Whole-School Health Intervention on Clustered Adolescent Health Risks: Latent Transition Analysis of Data from the INCLUSIVE Trial

    Get PDF
    Whole-school interventions are a promising approach to preventing bullying and aggression while promoting broader health. The main analyses from a trial of the INCLUSIVE whole-school intervention reported reductions in bullying victimisation but not aggression and improved mental well-being. Latent transition analysis can examine how interventions ‘move’ people between classes defined by multiple outcomes over time. We examined at baseline what classes best defined individuals’ bullying, aggression and mental well-being and what effects did the intervention have on movement between classes over time? INCLUSIVE was a two-arm cluster-randomised trial with 20 high schools per arm, with 24-month and 36-month follow-ups. We estimated sequential latent class solutions on baseline data. We then estimated a latent transition model including baseline, 24-month and 36-month follow-up measurements. Our sample comprised 8179 students (4082 control, 4097 intervention arms). At baseline, classes were (1) bullying victims, (2) aggression perpetrators, (3) extreme perpetrators and (4) neither victims nor perpetrators. Control students who were extreme perpetrators were equally likely to stay in this class (27.0% probability) or move to aggression perpetrators (25.0% probability) at 24 months. In the intervention group, fewer extreme perpetrators students remained (5.4%), with more moving to aggression perpetrators (65.1%). More control than intervention extreme perpetrators moved to neither victims nor perpetrators (35.2% vs 17.8%). Between 24 and 36 months, more intervention students moved from aggression perpetrators to neither victims nor perpetrators than controls (30.1% vs 22.3%). Our findings suggest that the intervention had important effects in transitioning students to lower-risk classes

    Using qualitative research to explore intervention mechanisms: findings from the trial of the Learning Together whole-school health intervention

    Get PDF
    Background: This study reports on qualitative research conducted within a randomised controlled trial to explore possible intervention mechanisms. It focuses on the ‘Learning Together’ whole-school intervention delivered in secondary schools in England from 2014 to 2017 aiming to prevent bullying and aggression and improve student health. Intervention schools received staff training in restorative practice, a social and emotional learning curriculum, and an external facilitator and manual to convene and run a student/staff action group tasked with coordinating the intervention, focusing this on local needs. / Methods: Informed by realist approaches to evaluation, we analysed qualitative data to explore intervention mechanisms and how these might interact with school contexts to generate outcomes. Qualitative analysis drew on 45 interviews and 21 focus groups across three case-study schools and employed thematic content analysis to explore how intervention resources were taken up and used by local actors, how participants described the intervention mechanisms that then ensued, and how these might have generated beneficial outcomes. / Results: The thematic content analysis identified three social mechanisms that recurred in participant accounts: (1) building student commitment to the school community, (2) building healthy relationships by modelling and teaching pro-social skills, and (3) de-escalating bullying and aggression and enabling re-integration within the school community. / Conclusions: Our analysis provides in-depth exploration of possible mechanisms and the contextual contingencies associated with these, allowing refinement of the initial intervention theory of change. / Trial registration: ISRCTN registry 10751359. Registered on 11 March 2014

    Elliptical Galaxy in the Making: The Dual Active Galactic Nuclei and Metal-enriched Halo of Mrk 273

    Get PDF
    A systematic analysis of the X-ray emission from the nearby ultraluminous infrared galaxy Mrk 273 was carried out by combining new 200 ksec Chandra data with archived 44 ksec data. The active galactic nucleus (AGN) associated with the Southwest nucleus is confirmed by the new data, and a secondary hard X-ray (4-8 keV) point source is detected, coincident with the Northeast nucleus at a projected distance of 0.75 kpc from the Southwest nucleus. The hard X-ray spectrum of the Northeast nucleus is consistent with a heavily absorbed AGN, making Mrk 273 another example of a dual AGN in a nearby galaxy merger. Significant 1-3 keV emission is found along the ionization cones and outflowing gas detected in a previous study. The data also map the giant X-ray nebula south of the host galaxy with unprecedented detail. This nebula extends on a scale of \sim 40 kpc ×\times 40 kpc, and is not closely related to the well-known tidal tail seen in the optical. The X-ray emission of the nebula is best described by a single-temperature gas model, with a temperature of \sim 7 million K and a super-solar α\alpha/Fe ratio. Further analysis suggests that the southern nebula has most likely been heated and enriched by multiple galactic outflows generated by the AGN and/or circumnuclear starburst in the past, on a time scale of \lesssim0.1 Gyr, similar to the merger event itself.Comment: 25 pages, 22 figures, 4 tables, accepted for publication in the Astrophysical Journa

    On the analysis of movement smoothness.

    No full text
    Quantitative measures of smoothness play an important role in the assessment of sensorimotor impairment and motor learning. Traditionally, movement smoothness has been computed mainly for discrete movements, in particular arm, reaching and circle drawing, using kinematic data. There are currently very few studies investigating smoothness of rhythmic movements, and there is no systematic way of analysing the smoothness of such movements. There is also very little work on the smoothness of other movement related variables such as force, impedance etc. In this context, this paper presents the first step towards a unified framework for the analysis of smoothness of arbitrary movements and using various data. It starts with a systematic definition of movement smoothness and the different factors that influence smoothness, followed by a review of existing methods for quantifying the smoothness of discrete movements. A method is then introduced to analyse the smoothness of rhythmic movements by generalising the techniques developed for discrete movements. We finally propose recommendations for analysing smoothness of any general sensorimotor behaviour
    corecore