21 research outputs found

    Circulating angiopoietin-2 levels in the course of septic shock: relation with fluid balance, pulmonary dysfunction and mortality

    Get PDF
    Contains fulltext : 79899.pdf (publisher's version ) (Closed access)PURPOSE: To investigate whether angiopoietin-2, von Willebrand factor (VWF) and angiopoietin-1 relate to surrogate indicators of vascular permeability, pulmonary dysfunction and intensive care unit (ICU) mortality throughout the course of septic shock. METHODS: In 50 consecutive mechanically ventilated septic shock patients, plasma angiopoietin-2, VWF and angiopoietin-1 levels and fluid balance, partial pressure of oxygen/inspiratory oxygen fraction and the oxygenation index as indicators of vascular permeability and pulmonary dysfunction, respectively, were measured until day 28. RESULTS: Angiopoietin-2 positively related to the fluid balance and pulmonary dysfunction, was higher in non-survivors than in survivors and independently predicted non-survival throughout the course of septic shock. VWF inversely related to the fluid balance and pulmonary dysfunction throughout the course of septic shock, was comparable between survivors and non-survivors and predicted non-survival on day 0 only. Angiopoietin-1 positively related to pulmonary dysfunction throughout the course, but did not differ between survivors and non-survivors. CONCLUSIONS: In contrast to VWF, plasma angiopoietin-2 positively relates to fluid balance, pulmonary dysfunction and mortality throughout the course of septic shock, in line with a suggested mediator role of the protein

    Opposing Effects of the Angiopoietins on the Thrombin-Induced Permeability of Human Pulmonary Microvascular Endothelial Cells

    Get PDF
    BACKGROUND: Angiopoietin-2 (Ang-2) is associated with lung injury in ALI/ARDS. As endothelial activation by thrombin plays a role in the permeability of acute lung injury and Ang-2 may modulate the kinetics of thrombin-induced permeability by impairing the organization of vascular endothelial (VE-)cadherin, and affecting small Rho GTPases in human pulmonary microvascular endothelial cells (HPMVECs), we hypothesized that Ang-2 acts as a sensitizer of thrombin-induced hyperpermeability of HPMVECs, opposed by Ang-1. METHODOLOGY/PRINCIPAL FINDINGS: Permeability was assessed by measuring macromolecule passage and transendothelial electrical resistance (TEER). Angiopoietins did not affect basal permeability. Nevertheless, they had opposing effects on the thrombin-induced permeability, in particular in the initial phase. Ang-2 enhanced the initial permeability increase (passage, P = 0.010; TEER, P = 0.021) in parallel with impairment of VE-cadherin organization without affecting VE-cadherin Tyr685 phosphorylation or increasing RhoA activity. Ang-2 also increased intercellular gap formation. Ang-1 preincubation increased Rac1 activity, enforced the VE-cadherin organization, reduced the initial thrombin-induced permeability (TEER, P = 0.027), while Rac1 activity simultaneously normalized, and reduced RhoA activity at 15 min thrombin exposure (P = 0.039), but not at earlier time points. The simultaneous presence of Ang-2 largely prevented the effect of Ang-1 on TEER and macromolecule passage. CONCLUSIONS/SIGNIFICANCE: Ang-1 attenuated thrombin-induced permeability, which involved initial Rac1 activation-enforced cell-cell junctions, and later RhoA inhibition. In addition to antagonizing Ang-1, Ang-2 had also a direct effect itself. Ang-2 sensitized the initial thrombin-induced permeability accompanied by destabilization of VE-cadherin junctions and increased gap formation, in the absence of increased RhoA activity

    Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia–reperfusion-induced endothelial cell apoptosis

    Get PDF
    Activation of cytoskeleton regulator Rho-kinase during ischemia–reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R2 = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity

    Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways

    Get PDF
    The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.</p

    Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways

    Get PDF
    The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.</p

    Evaluation of high-throughput genomic assays for the Fc gamma receptor locus

    Get PDF
    Cancer immunotherapy has been revolutionised by the use of monoclonal antibodies (mAb) that function through their interaction with Fc gamma receptors (FcγRs). The low-affinity FcγR genes are highly homologous, map to a complex locus at 1p23 and harbour single nucleotide polymorphisms (SNPs) and copy number variation (CNV) that can impact on receptor function and response to therapeutic mAbs. This complexity can hinder accurate characterisation of the locus. We therefore evaluated and optimised a suite of assays for the genomic analysis of the FcγR locus amenable to peripheral blood mononuclear cells and formalin-fixed paraffin-embedded (FFPE) material that can be employed in a high-throughput manner. Assessment of TaqMan genotyping for FCGR2A-131H/R, FCGR3A-158F/V and FCGR2B-232I/T SNPs demonstrated the need for additional methods to discriminate genotypes for the FCGR3A-158F/V and FCGR2B-232I/T SNPs due to sequence homology and CNV in the region. A multiplex ligation-dependent probe amplification assay provided high quality SNP and CNV data in PBMC cases, but there was greater data variability in FFPE material in a manner that was predicted by the BIOMED-2 multiplex PCR protocol. In conclusion, we have evaluated a suite of assays for the genomic analysis of the FcγR locus that are scalable for application in large clinical trials of mAb therapy. These assays will ultimately help establish the importance of FcγR genetics in predicting response to antibody therapeutics

    Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia

    No full text
    OBJECTIVE: To compare crystalloid and colloid fluids in their effect on pulmonary edema in hypovolemic septic and nonseptic patients with or at risk for acute lung injury/acute respiratory distress syndrome. We hypothesized that 1) crystalloid loading results in more edema formation than colloid loading and 2) the differences among the types of fluid decreases at high permeability. DESIGN, SETTING, AND PATIENTS: Prospective randomized clinical trial on the effect of fluids in 24 septic and 24 nonseptic mechanically ventilated patients with clinical hypovolemia. INTERVENTIONS: Patients were assigned to NaCl 0.9%, gelatin 4%, hydroxyethyl starch 6%, or albumin 5% loading for 90 minutes according to changes in filling pressures. MEASUREMENTS AND MAIN RESULTS: Twenty-three septic and 10 nonseptic patients had acute lung injury/acute respiratory distress syndrome (p < 0.001). Septic patients had greater pulmonary capillary permeability, edema, and severity of lung injury than nonseptic patients (p < 0.01), as measured by the pulmonary leak index (PLI) for Gallium-labeled transferrin, extravascular lung water (EVLW), and lung injury score (LIS), respectively. Colloids increased plasma volume, cardiac index, and central venous pressure (CVP) more than crystalloids (p < 0.05), although more crystalloids were infused (p < 0.05). Colloid osmotic pressure (COP) increased in colloid and decreased in crystalloid groups (p < 0.001). Irrespective of fluid type or underlying disease, the pulmonary leak index increased by median 5% (p < 0.05). Regardless of fluid type or underlying disease, EVLW and LIS did not change during fluid loading and EVLW related to COP-CVP (rs = -.40, p < 0.01). CONCLUSIONS: Pulmonary edema and LIS are not affected by the type of fluid loading in the steep part of the cardiac function curve in both septic and nonseptic patients. Then, pulmonary capillary permeability may be a smaller determinant of pulmonary edema than COP and CVP. Safety factors may have prevented edema during a small filtration pressure-induced rise in pulmonary protein and thus fluid transport

    Table_3_Identification of drug candidates targeting monocyte reprogramming in people living with HIV.xlsx

    No full text
    IntroductionPeople living with HIV (PLHIV) are characterized by functional reprogramming of innate immune cells even after long-term antiretroviral therapy (ART). In order to assess technical feasibility of omics technologies for application to larger cohorts, we compared multiple omics data layers.MethodsBulk and single-cell transcriptomics, flow cytometry, proteomics, chromatin landscape analysis by ATAC-seq as well as ex vivo drug stimulation were performed in a small number of blood samples derived from PLHIV and healthy controls from the 200-HIV cohort study.ResultsSingle-cell RNA-seq analysis revealed that most immune cells in peripheral blood of PLHIV are altered in their transcriptomes and that a specific functional monocyte state previously described in acute HIV infection is still existing in PLHIV while other monocyte cell states are only occurring acute infection. Further, a reverse transcriptome approach on a rather small number of PLHIV was sufficient to identify drug candidates for reversing the transcriptional phenotype of monocytes in PLHIV.DiscussionThese scientific findings and technological advancements for clinical application of single-cell transcriptomics form the basis for the larger 2000-HIV multicenter cohort study on PLHIV, for which a combination of bulk and single-cell transcriptomics will be included as the leading technology to determine disease endotypes in PLHIV and to predict disease trajectories and outcomes.</p
    corecore