2 research outputs found

    Effect of a short-term low fermentable oligosaccharide disaccharide, monosaccharide and polyol (FODMAP) diet on exercise-related gastrointestinal symptoms

    Get PDF
    Background: Research has demonstrated that low fermentable oligosaccharide disaccharide monosaccharide and polyol (FODMAP) diets improve gastrointestinal (GI) symptoms in irritable bowel syndrome sufferers. Exercise-related GI issues are a common cause of underperformance, with current evidence focusing on the use of FODMAP approaches with recreationally competitive or highly trained athletes. However, there is a paucity of research exploring the potential benefit of FODMAP strategies to support healthy, recreational athletes who experience GI issues during training. This study therefore aimed to assess whether a short-term LOWFODMAP diet improved exercise-related GI symptoms and the perceived ability to exercise in recreational runners. Methods: Sixteen healthy volunteers were randomly assigned in a crossover design manner to either a LOWFODMAP (16.06 ± 1.79 g·d-1) or HIGHFODMAP (38.65 ± 6.66 g·d-1) diet for 7 days, with a one week washout period followed by a further 7 days on the alternate diet. Participants rated their gastrointestinal symptoms on an adapted version of the Irritable Bowel Syndrome-Severity Scoring System (IBS-SSS) questionnaire before and at the end of each dietary period. Perceived ability to exercise (frequency, intensity and duration) in relation to each dietary period was also rated using a visual analogue scale. Resting blood samples were collected prior to and on completion of each diet to determine plasma intestinal fatty acid binding protein (I-FABP) as a marker of acute GI injury. Results: Overall IBS-SSS score significantly reduced in the LOWFODMAP condition from 81.1±16.4 to 31.3±9.2 (arbitrary units; P = 0.004). Perceived exercise frequency (z = 2.309, P = 0.02) and intensity (z = 2.687, P = 0.007) was significantly improved following a short-term LOWFODMAP approach compared to HIGHFODMAP. No significant differences were reported between dietary conditions for plasma I-FABP (P>0.05). Conclusions: A short-term LOWFODMAP diet under free-living conditions reduced exercise-related GI symptoms and improved the perceived ability to exercise in otherwise healthy, recreational runners. These findings may be explained by a reduction in indigestible carbohydrates available for fermentation in the gut. The therapeutic benefits of LOWFODMAP diets in recreational and trained athletes during sustained training periods warrants further investigation

    International Society of Sports Nutrition Position Stand: Nutritional recommendations for single-stage ultra-marathon; training and racing

    Get PDF
    Background. In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~60% of energy intake, 5 – 8 g⸱kg−1·d−1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~1.6 g·kg−1·d−1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 g⸱kg−1·d−1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150 - 400 kcal⸱h−1 (carbohydrate, 30 – 50 g⸱h−1; protein, 5 – 10 g⸱h−1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450 – 750 mL⸱h−1 (~150 – 250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., >575 mg·L−1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety
    corecore