43 research outputs found
Design and stochastic analysis of emerging large-scale wireless-powered sensor networks
Premi Extraordinari de Doctorat, promoció 2016-2017. Àmbit d’Enginyeria de les TICUndeniably, the progress in wireless networks during the last two decades is extraordinary. However, the ever-increasing upward trend in the numbers of wireless devices that will overwhelm every field of our everyday life, e.g., building automation, traffic management, health-care, etc., will introduce several issues in terms of communication and energy provision that need to be handled in advance.
Regarding the communication issues, it is imperative to ensure the correct operation of the vast collection of nodes, especially for life-critical applications. Two well-known metrics that can characterize sufficiently the network reliability are the coverage and the connectivity probability that are derived by taking into account the network topology, the channel conditions between every transmitter-receiver pair, and the interference from other nodes. Nevertheless, considering all those factors is not straightforward. Lately, stochastic geometry has come into prominence, which is a mathematical tool to study the average network performance over many spatial realizations, while considering all aforementioned factors.
Moreover, the other crucial issue for the large-scale dense network deployments of the future is their energy supply. Traditional battery charging or swapping for the wireless devices is both inconvenient and harms the environment, especially if we take into account the enormous numbers of nodes. Therefore, novel solutions have to be found using renewable energy sources to zero down the significant electricity consumption. Wireless energy harvesting is a convenient and environmentally-friendly approach to prolong the lifetime of networks by harvesting the energy from radio-frequency (RF) signals and converting it to direct current electricity through specialized hardware. The RF energy could be harvested from signals generated in the same or other networks. However, if the amount of harvested energy is not sufficient, solar-powered dedicated transmitters could be employed. In this way, we can achieve a favorable outcome by having both a zero-energy network operation and convenience in the charging of the wireless devices. Still, extensive investigation should be done in order to ensure that the communication performance is not affected.
To that end, in this thesis, we study the communication performance in large-scale networks using tools from stochastic geometry. The networks that we study comprise wireless devices that are able to harvest the energy of RF signals. In the first part of the thesis, we present the effects of wireless energy harvesting from the transmissions of the cooperative network on the coverage probability and the network lifetime. In the second part of the thesis, we first employ batteryless nodes that are powered by dedicated RF energy transmitters to study the connectivity probability. Then, we assume that the dedicated transmitters are powered by solar energy to study the connectivity in a clustered network and investigate, for the first time, the reliability of zero-energy networks. Finally, we conclude the thesis by providing insightful research challenges for future works.Innegablemente, el progreso en las redes inalámbricas durante las últimas dos décadas es extraordinario. Sin embargo, la creciente tendencia al alza en el número de dispositivos inalámbricos que abarcarán todos los ámbitos de nuestra vida cotidiana, como la automatización de edificios, la gestión del tráfico, la atención sanitaria, etc., introducirá varias cuestiones en términos de comunicación y suministro de energía que se debe tener en cuenta con antelación. Respecto a los problemas de comunicación, es imprescindible asegurar el correcto funcionamiento de la vasta colección de nodos, especialmente para las aplicaciones vitales. Dos métricas bien conocidas que pueden caracterizar suficientemente la fiabilidad de la red son la probabilidad de cobertura y la de conectividad, que se derivan teniendo en cuenta la topología de la red, las condiciones del canal entre cada par transmisor-receptor y la interferencia de otros nodos. Sin embargo, considerar todos esos factores no es sencillo. Últimamente, la geometría estocástica ha llegado a la prominencia como un metodo de análisis, que es una herramienta matemática para estudiar el rendimiento promedio de la red sobre muchas realizaciones espaciales, teniendo en cuenta todos los factores mencionados. Además, la otra cuestión crucial para los despliegues de alta densidad de las redes futuras es su suministro de energía. La carga o el intercambio de baterías para los dispositivos inalámbricos es inconveniente y daña el medio ambiente, especialmente si tenemos en cuenta el enorme número de nodos utilizados. Por lo tanto, se deben encontrar nuevas soluciones utilizando fuentes de energía renovables para reducir el consumo de electricidad. La recolección de energía inalámbrica es un método conveniente y respetuoso con el medio ambiente para prolongar la vida útil de las redes recolectando la energía de las señales de radiofrecuencia (RF) y convirtiéndola en electricidad de corriente continua mediante un hardware especializado. La energía de RF podría ser obtenida a partir de señales generadas en la misma o en otras redes. Sin embargo, si la cantidad de energía obtenida no es suficiente, podrían emplearse transmisores de energía inalambricos que la obtuvieran mediante paneles fotovoltaicos. De esta manera, podemos lograr un resultado favorable teniendo tanto una operación de red de energía cero como una conveniencia en la carga de los dispositivos inalámbricos. Por lo tanto, una investigación exhaustiva debe hacerse con el fin de garantizar que el rendimiento de la comunicación no se ve afectada. En esta tesis se estudia el rendimiento de la comunicación en redes de gran escala utilizando técnicas de geometría estocástica. Las redes que se estudian comprenden dispositivos inalámbricos capaces de recoger la energía de las señales RF. En la primera parte de la tesis, presentamos los efectos de la recolección de energía inalámbrica de las transmisiones de la red cooperativa sobre la probabilidad de cobertura y la vida útil de la red. En la segunda parte de la tesis, primero empleamos nodos sin baterías que son alimentados por transmisores de energía de RF para estudiar la probabilidad de conectividad. A continuación, asumimos que los transmisores dedicados son alimentados por energía solar para estudiar la conectividad en una red agrupada (clustered network) e investigar, por primera vez, la fiabilidad de las redes de energía cero. Finalmente, concluimos la tesis aportando nuevas lineas de investigación para trabajos futurosAward-winningPostprint (published version
Design and stochastic analysis of emerging large-scale wireless-powered sensor networks
Undeniably, the progress in wireless networks during the last two decades is extraordinary. However, the ever-increasing upward trend in the numbers of wireless devices that will overwhelm every field of our everyday life, e.g., building automation, traffic management, health-care, etc., will introduce several issues in terms of communication and energy provision that need to be handled in advance.
Regarding the communication issues, it is imperative to ensure the correct operation of the vast collection of nodes, especially for life-critical applications. Two well-known metrics that can characterize sufficiently the network reliability are the coverage and the connectivity probability that are derived by taking into account the network topology, the channel conditions between every transmitter-receiver pair, and the interference from other nodes. Nevertheless, considering all those factors is not straightforward. Lately, stochastic geometry has come into prominence, which is a mathematical tool to study the average network performance over many spatial realizations, while considering all aforementioned factors.
Moreover, the other crucial issue for the large-scale dense network deployments of the future is their energy supply. Traditional battery charging or swapping for the wireless devices is both inconvenient and harms the environment, especially if we take into account the enormous numbers of nodes. Therefore, novel solutions have to be found using renewable energy sources to zero down the significant electricity consumption. Wireless energy harvesting is a convenient and environmentally-friendly approach to prolong the lifetime of networks by harvesting the energy from radio-frequency (RF) signals and converting it to direct current electricity through specialized hardware. The RF energy could be harvested from signals generated in the same or other networks. However, if the amount of harvested energy is not sufficient, solar-powered dedicated transmitters could be employed. In this way, we can achieve a favorable outcome by having both a zero-energy network operation and convenience in the charging of the wireless devices. Still, extensive investigation should be done in order to ensure that the communication performance is not affected.
To that end, in this thesis, we study the communication performance in large-scale networks using tools from stochastic geometry. The networks that we study comprise wireless devices that are able to harvest the energy of RF signals. In the first part of the thesis, we present the effects of wireless energy harvesting from the transmissions of the cooperative network on the coverage probability and the network lifetime. In the second part of the thesis, we first employ batteryless nodes that are powered by dedicated RF energy transmitters to study the connectivity probability. Then, we assume that the dedicated transmitters are powered by solar energy to study the connectivity in a clustered network and investigate, for the first time, the reliability of zero-energy networks. Finally, we conclude the thesis by providing insightful research challenges for future works.Innegablemente, el progreso en las redes inalámbricas durante las últimas dos décadas es extraordinario. Sin embargo, la creciente tendencia al alza en el número de dispositivos inalámbricos que abarcarán todos los ámbitos de nuestra vida cotidiana, como la automatización de edificios, la gestión del tráfico, la atención sanitaria, etc., introducirá varias cuestiones en términos de comunicación y suministro de energía que se debe tener en cuenta con antelación. Respecto a los problemas de comunicación, es imprescindible asegurar el correcto funcionamiento de la vasta colección de nodos, especialmente para las aplicaciones vitales. Dos métricas bien conocidas que pueden caracterizar suficientemente la fiabilidad de la red son la probabilidad de cobertura y la de conectividad, que se derivan teniendo en cuenta la topología de la red, las condiciones del canal entre cada par transmisor-receptor y la interferencia de otros nodos. Sin embargo, considerar todos esos factores no es sencillo. Últimamente, la geometría estocástica ha llegado a la prominencia como un metodo de análisis, que es una herramienta matemática para estudiar el rendimiento promedio de la red sobre muchas realizaciones espaciales, teniendo en cuenta todos los factores mencionados. Además, la otra cuestión crucial para los despliegues de alta densidad de las redes futuras es su suministro de energía. La carga o el intercambio de baterías para los dispositivos inalámbricos es inconveniente y daña el medio ambiente, especialmente si tenemos en cuenta el enorme número de nodos utilizados. Por lo tanto, se deben encontrar nuevas soluciones utilizando fuentes de energía renovables para reducir el consumo de electricidad. La recolección de energía inalámbrica es un método conveniente y respetuoso con el medio ambiente para prolongar la vida útil de las redes recolectando la energía de las señales de radiofrecuencia (RF) y convirtiéndola en electricidad de corriente continua mediante un hardware especializado. La energía de RF podría ser obtenida a partir de señales generadas en la misma o en otras redes. Sin embargo, si la cantidad de energía obtenida no es suficiente, podrían emplearse transmisores de energía inalambricos que la obtuvieran mediante paneles fotovoltaicos. De esta manera, podemos lograr un resultado favorable teniendo tanto una operación de red de energía cero como una conveniencia en la carga de los dispositivos inalámbricos. Por lo tanto, una investigación exhaustiva debe hacerse con el fin de garantizar que el rendimiento de la comunicación no se ve afectada. En esta tesis se estudia el rendimiento de la comunicación en redes de gran escala utilizando técnicas de geometría estocástica. Las redes que se estudian comprenden dispositivos inalámbricos capaces de recoger la energía de las señales RF. En la primera parte de la tesis, presentamos los efectos de la recolección de energía inalámbrica de las transmisiones de la red cooperativa sobre la probabilidad de cobertura y la vida útil de la red. En la segunda parte de la tesis, primero empleamos nodos sin baterías que son alimentados por transmisores de energía de RF para estudiar la probabilidad de conectividad. A continuación, asumimos que los transmisores dedicados son alimentados por energía solar para estudiar la conectividad en una red agrupada (clustered network) e investigar, por primera vez, la fiabilidad de las redes de energía cero. Finalmente, concluimos la tesis aportando nuevas lineas de investigación para trabajos futuro
Connectivity analysis in clustered wireless sensor networks powered by solar energy
©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Emerging 5G communication paradigms, such as machine-type communication, have triggered an explosion in ad-hoc applications that require connectivity among the nodes of wireless networks. Ensuring a reliable network operation under fading conditions is not straightforward, as the transmission schemes and the network topology, i.e., uniform or clustered deployments, affect the performance and should be taken into account. Moreover, as the number of nodes increases, exploiting natural energy sources and wireless energy harvesting (WEH) could be the key to the elimination of maintenance costs while also boosting immensely the network lifetime. In this way, zero-energy wireless-powered sensor networks (WPSNs) could be achieved, if all components are powered by green sources. Hence, designing accurate mathematical models that capture the network behavior under these circumstances is necessary to provide a deeper comprehension of such networks. In this paper, we provide an analytical model for the connectivity in a large-scale zero-energy clustered WPSN under two common transmission schemes, namely, unicast and broadcast. The sensors are WEH-enabled, while the network components are solar-powered and employ a novel energy allocation algorithm. In our results, we evaluate the tradeoffs among the various scenarios via extensive simulations and identify the conditions that yield a fully connected zero-energy WPSN.Peer ReviewedPostprint (author's final draft
Information exchange in randomly deployed dense WSNs with wireless energy harvesting capabilities
©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As large-scale dense and often randomly deployed wireless sensor networks (WSNs) become widespread, local information exchange between colocated sets of nodes may play a significant role in handling the excessive traffic volume. Moreover, to account for the limited life-span of the wireless devices, harvesting the energy of the network transmissions provides significant benefits to the lifetime of such networks. In this paper, we study the performance of communication in dense networks with wireless energy harvesting (WEH)-enabled sensor nodes. In particular, we examine two different communication scenarios (direct and cooperative) for data exchange and we provide theoretical expressions for the probability of successful communication. Then, considering the importance of lifetime in WSNs, we employ state-of-the-art WEH techniques and realistic energy converters, quantifying the potential energy gains that can be achieved in the network. Our analytical derivations, which are validated by extensive Monte-Carlo simulations, highlight the importance of WEH in dense networks and identify the tradeoffs between the direct and cooperative communication scenarios.Peer ReviewedPostprint (author's final draft
SCHEMA: Service Chain Elastic Management with distributed reinforcement learning
As the demand for Network Function Virtualization accelerates, service providers are expected to advance the way they manage and orchestrate their network services to offer lower latency services to their future users. Modern services require complex data flows between Virtual Network Functions, placed in separate network domains, risking an increase in latency that compromises the offered latency constraints. This shift requires high levels of automation to deal with the scale and load of future networks. In this paper, we formulate the Service Function Chaining (SFC) placement problem and then we tackle it by introducing SCHEMA, a Distributed Reinforcement Learning (RL) algorithm that performs complex SFC orchestration for low latency services. We combine multiple RL agents with a Bidding Mechanism to enable scalability on multi-domain networks. Finally, we use a simulation model to evaluate SCHEMA, and we demonstrate its ability to obtain a 60.54% reduction of average service latency when compared to a centralised RL solution.Peer ReviewedPostprint (author's final draft
Wireless energy harvesting in two-way network coded cooperative communications: a stochastic approach for large scale networks
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this letter, we study the performance of Network Coding (NC)-aided cooperative communications in large scale networks, where the relays are able to harvest energy emitted by wireless transmissions. In particular, we derive theoretical expressions for key network performance metrics, i.e., the probability of successful data exchange and the network lifetime gain. The proposed analytical expressions are verified via extensive Monte Carlo simulations, demonstrating the potential benefits of the energy harvested by the wireless transmissions.Peer ReviewedPostprint (author’s final draft
Communication recovery with emergency aerial networks
©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In spite of the significant advancements in wireless connectivity, the static form of the network infrastructure cannot guarantee an uninterrupted operation of the ever-growing wireless consumer electronics in emergency situations such as natural disasters. In such occasions, employing flexible aerial nodes can tackle this issue by recovering the communication rapidly, when the need for connectivity is of utmost importance. In this paper, we study the use of aerial nodes for communication recovery after a communication breakdown. We provide an analytical model of the recovery probability that demonstrates the capabilities of such networks. In the performance evaluation, we show the effects of the altitude and the distance between the aerial nodes on the recovery probability and verify them with simulations. Moreover, we introduce our testbed and preliminary experimental work that shows promising results for aerial networks. Finally, we discuss useful insights for the network design and present some open issues that exist in this field.Peer ReviewedPostprint (author's final draft
Connectivity of large-scale WSNs in fading environments under different routing Mechanisms
@IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As the number of nodes in wireless sensor networks (WSNs) increases, new challenges have to be faced in order to maintain their performance. A fundamental requirement of several applications is the correct transmission of the measurements to their final destinations. Thus, it is crucial to guarantee a high probability of connectivity, which characterizes the ability of every node to report to the fusion center. This network metric is strongly affected by both the fading characteristics and the different routing protocols that are used for the dissemination of data. In this paper, we study the probability of a network to be fully connected for two widely employed routing mechanisms, namely unicast and K-anycast. The analytical derivations and the simulations evaluate the trade-offs among the different routing mechanisms and provide useful guidelines on the design of WSNs.Peer ReviewedPostprint (author's final draft
Dynamic Programmable Wireless Environment with UAV-mounted Static Metasurfaces
Reconfigurable intelligent surfaces (RISs) are artificial planar structures
able to offer a unique way of manipulating propagated wireless signals.
Commonly composed of a number of reconfigurable passive cell components and
basic electronic circuits, RISs can almost freely perform a set of wave
modification functionalities, in order to realize programmable wireless
environments (PWEs). However, a more energy-efficient way to realize a PWE is
through dynamically relocating static metasurfaces that perform a unique
functionality. In this paper, we employ a UAV swarm to dynamically deploy a set
of lowcost passive metasurfaces that are able to perform only one
electromagnetic functionality, but with the benefit of requiring no power.
Specifically, the UAV-mounted static metasurfaces are carefully positioned
across the sky to create cascaded channels for improved user service and
security hardening. The performance evaluation results, based o
Design and stochastic analysis of emerging large-scale wireless-powered sensor networks
Undeniably, the progress in wireless networks during the last two decades is extraordinary. However, the ever-increasing upward trend in the numbers of wireless devices that will overwhelm every field of our everyday life, e.g., building automation, traffic management, health-care, etc., will introduce several issues in terms of communication and energy provision that need to be handled in advance.
Regarding the communication issues, it is imperative to ensure the correct operation of the vast collection of nodes, especially for life-critical applications. Two well-known metrics that can characterize sufficiently the network reliability are the coverage and the connectivity probability that are derived by taking into account the network topology, the channel conditions between every transmitter-receiver pair, and the interference from other nodes. Nevertheless, considering all those factors is not straightforward. Lately, stochastic geometry has come into prominence, which is a mathematical tool to study the average network performance over many spatial realizations, while considering all aforementioned factors.
Moreover, the other crucial issue for the large-scale dense network deployments of the future is their energy supply. Traditional battery charging or swapping for the wireless devices is both inconvenient and harms the environment, especially if we take into account the enormous numbers of nodes. Therefore, novel solutions have to be found using renewable energy sources to zero down the significant electricity consumption. Wireless energy harvesting is a convenient and environmentally-friendly approach to prolong the lifetime of networks by harvesting the energy from radio-frequency (RF) signals and converting it to direct current electricity through specialized hardware. The RF energy could be harvested from signals generated in the same or other networks. However, if the amount of harvested energy is not sufficient, solar-powered dedicated transmitters could be employed. In this way, we can achieve a favorable outcome by having both a zero-energy network operation and convenience in the charging of the wireless devices. Still, extensive investigation should be done in order to ensure that the communication performance is not affected.
To that end, in this thesis, we study the communication performance in large-scale networks using tools from stochastic geometry. The networks that we study comprise wireless devices that are able to harvest the energy of RF signals. In the first part of the thesis, we present the effects of wireless energy harvesting from the transmissions of the cooperative network on the coverage probability and the network lifetime. In the second part of the thesis, we first employ batteryless nodes that are powered by dedicated RF energy transmitters to study the connectivity probability. Then, we assume that the dedicated transmitters are powered by solar energy to study the connectivity in a clustered network and investigate, for the first time, the reliability of zero-energy networks. Finally, we conclude the thesis by providing insightful research challenges for future works.Innegablemente, el progreso en las redes inalámbricas durante las últimas dos décadas es extraordinario. Sin embargo, la creciente tendencia al alza en el número de dispositivos inalámbricos que abarcarán todos los ámbitos de nuestra vida cotidiana, como la automatización de edificios, la gestión del tráfico, la atención sanitaria, etc., introducirá varias cuestiones en términos de comunicación y suministro de energía que se debe tener en cuenta con antelación. Respecto a los problemas de comunicación, es imprescindible asegurar el correcto funcionamiento de la vasta colección de nodos, especialmente para las aplicaciones vitales. Dos métricas bien conocidas que pueden caracterizar suficientemente la fiabilidad de la red son la probabilidad de cobertura y la de conectividad, que se derivan teniendo en cuenta la topología de la red, las condiciones del canal entre cada par transmisor-receptor y la interferencia de otros nodos. Sin embargo, considerar todos esos factores no es sencillo. Últimamente, la geometría estocástica ha llegado a la prominencia como un metodo de análisis, que es una herramienta matemática para estudiar el rendimiento promedio de la red sobre muchas realizaciones espaciales, teniendo en cuenta todos los factores mencionados. Además, la otra cuestión crucial para los despliegues de alta densidad de las redes futuras es su suministro de energía. La carga o el intercambio de baterías para los dispositivos inalámbricos es inconveniente y daña el medio ambiente, especialmente si tenemos en cuenta el enorme número de nodos utilizados. Por lo tanto, se deben encontrar nuevas soluciones utilizando fuentes de energía renovables para reducir el consumo de electricidad. La recolección de energía inalámbrica es un método conveniente y respetuoso con el medio ambiente para prolongar la vida útil de las redes recolectando la energía de las señales de radiofrecuencia (RF) y convirtiéndola en electricidad de corriente continua mediante un hardware especializado. La energía de RF podría ser obtenida a partir de señales generadas en la misma o en otras redes. Sin embargo, si la cantidad de energía obtenida no es suficiente, podrían emplearse transmisores de energía inalambricos que la obtuvieran mediante paneles fotovoltaicos. De esta manera, podemos lograr un resultado favorable teniendo tanto una operación de red de energía cero como una conveniencia en la carga de los dispositivos inalámbricos. Por lo tanto, una investigación exhaustiva debe hacerse con el fin de garantizar que el rendimiento de la comunicación no se ve afectada. En esta tesis se estudia el rendimiento de la comunicación en redes de gran escala utilizando técnicas de geometría estocástica. Las redes que se estudian comprenden dispositivos inalámbricos capaces de recoger la energía de las señales RF. En la primera parte de la tesis, presentamos los efectos de la recolección de energía inalámbrica de las transmisiones de la red cooperativa sobre la probabilidad de cobertura y la vida útil de la red. En la segunda parte de la tesis, primero empleamos nodos sin baterías que son alimentados por transmisores de energía de RF para estudiar la probabilidad de conectividad. A continuación, asumimos que los transmisores dedicados son alimentados por energía solar para estudiar la conectividad en una red agrupada (clustered network) e investigar, por primera vez, la fiabilidad de las redes de energía cero. Finalmente, concluimos la tesis aportando nuevas lineas de investigación para trabajos futuro