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Abstract—As the number of nodes in wireless sensor networks
(WSNs) increases, new challenges have to be faced in order
to maintain their performance. A fundamental requirement of
several applications is the correct transmission of the measure-
ments to their final destinations. Thus, it is crucial to guarantee
a high probability of connectivity, which characterizes the ability
of every node to report to the fusion center. This network metric
is strongly affected by both the fading characteristics and the
different routing protocols that are used for the dissemination
of data. In this paper, we study the probability of a network to
be fully connected for two widely employed routing mechanisms,
namely unicast and K-anycast. The analytical derivations and the
simulations evaluate the trade-offs among the different routing
mechanisms and provide useful guidelines on the design of WSNs.

Index Terms—Wireless sensor network, Connectivity, Routing,
Poisson point process

I. INTRODUCTION

Recent Internet of Things infrastructures result in the rapid
and random deployment of large-scale multihop wireless sen-
sor networks (WSNs) in urban environments. In such net-
works, the ability to guarantee the delivery of all information
from the source nodes to the final destination, e.g., a fusion
center, is crucial for their reliability. In particular, there are
many applications in different domains (such as smart grids
[1], intrusion detection [2], vehicular networks [3], etc.) that
demand the existence of a path between any two nodes in
the network. Therefore, in contrast to small-scale WSNs,
the random deployment of a large number of sensors raises
important issues with regard to i) the routing mechanisms that
are employed to ensure that information is delivered efficiently
to the fusion center, and ii) link failures due to channel
conditions in conjunction with the random deployment, that
could be induced without appropriate network design.

In large-scale WSNs, there is a trade-off between energy
consumption and quality of service (QoS), which significantly
depends on the employed routing mechanism. In the most
common routing schemes, a source node either communicates
with one receiver (i.e., usually its nearest neighbor based on
a routing table) with a point-to-point unicast transmission or
broadcasts its message to every node in the network with
a point to multipoint transmission. In the unicast case, the
total energy consumption of the network is lower since only
one receiver participates in each hop [4], which, however,
results in lower QoS. On the other hand, in the broadcast

case, more users participate in the message reception, thus
resulting in higher total power consumption. Yet, the higher
number of receivers increases the diversity gain, leading to
QoS improvement. In an intermediate scheme, known as
K-anycast, a source node transmits its data to a group of
the K nearest out of n nodes [5]. The extreme cases of 2-
anycast and n-anycast (i.e., broadcast) provide the bounds of
the K-anycast routing mechanism.

Additionally to the routing mechanism, the network reliabil-
ity is compromised due to path failures that may occur either
due to the random topology or the channel fading conditions.
As a result, there is a need to quantify the ability of a node
to report at the fusion center. This can be measured with
the probability of connectivity [6], [7]. Generally, when this
probability becomes one, it can be shown that there is a path
between any pair of nodes. In the literature, there are many
works that study the probability of connectivity in wireless
networks [7]–[9]. In [7], the author examines a wireless
multihop network and calculates the critical radio range that is
required to achieve a minimum number of neighbors per node,
so-called minimum node degree. Through the minimum node
degree, the author derives the connectivity of the network. This
work is extended in [8] by taking into account the boundary
effects in a finite wireless network, in order to improve the
accuracy of the overall network connectivity. Moreover, in
[9], the authors derive the mean node degree, which provides
the average number of nodes that are in the vicinity of each
node. This metric provides insights about the connectivity of
a network (i.e., when the mean node degree is above one, then
the network starts to consist of a finite number of clusters) and
the minimum delay of information propagation [10].

The aforementioned works provide a very useful overview
of the connectivity in wireless networks, but they do not take
into account the effect of channel fading. Although, in the
absence of fading, the nearest neighbor of a given node always
provides the strongest wireless link, in fading environments,
due to the randomness of the channel, the strongest link may
not correspond to the nearest neighbor. Hence, the network
connectivity is affected and routing can play an important role
in guaranteeing the delivery of a message through multihop to
the fusion center.

There are some works that study the connectivity of WSNs
in fading environments i.e., [11], [12], however, to the best of
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Fig. 1: The three communication scenarios a) unicast, b) 2-
anycast, and c) broadcast).

our knowledge, none of them considers the effects of routing in
connectivity. In [11], the authors provide an empirical formula
that relates connectivity with mean node degree using a log-
normal shadowing radio propagation model. Nevertheless, the
link probability does not take into account the density and
the random locations among the nodes, which is vital for the
realistic characterization of WSNs. Moreover, the authors in
[12] focus on the energy savings that can be achieved by
adjusting the connectivity of a network to 95%, instead of
having full connectivity. In their analysis, they assume log-
normal shadowing model, however, they do not consider any
model for the distribution of the nodes.

In this paper, we study the connectivity of a large-scale
randomly deployed WSN in a fading environment for the
unicast and the extreme cases of the K-anycast routing
mechanisms (i.e., 2-anycast and broadcast). In order to model
the random locations of the nodes, we distribute the nodes
according to a homogeneous Poisson point process (HPPP),
which is a sensible approach for modeling large-scale WSNs
[13]. Our contribution is threefold: i) We analytically derive
the probability of connectivity in fading environments for
the unicast and the 2-anycast routing mechanisms, ii) we
analytically derive the mean node degree of the network to
provide insights about the broadcast scheme, and iii) we
compare the two different routing mechanisms (unicast, K-
anycast for K = {2, n}) and discuss the trade-offs and benefits
for different kind of applications.

The remaining part of this paper is organized as follows. In
Section II, we describe the system model. The mathematical
derivations of the connectivity and mean node degree in the
presence of fading are presented in III. The theoretical and
simulation results are provided and discussed in Section IV.
Finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider a large-scale wireless network consisting of
a set of n source nodes S that transmit their messages via
multi-hop communication to a fusion center F that is randomly
deployed in the same plane. All nodes are assumed to be on the
Euclidean plane and they are represented by an independent
HPPP ΦS = {x1, x2, . . . , xn}, where xi, ∀i ∈ N, denotes the
location (i.e., Cartesian coordinates) of the ith node. ΦS has
an intensity λ, which corresponds to the average number of
points per area unit.

In our analysis, we examine the ability of a source to
connect to a given node, based on their relative distance. In a
HPPP, the probability density function (PDF) of the distance
r of a node to its nth nearest neighbor is given by [13]

fn(r) =
2

Γ(n)
(λπ)nr2n−1e−λπr

2

, (1)

where Γ denotes the Gamma function given by
Γ(t) =

∫∞
0
xt−1e−xdx. The average received power

at a node is denoted by Pr = Pthr
−α
n , where rn is the

distance between the receiver and its nth nearest neighbor
(i.e., without loss of generality, we assume that the respective
receiving node is located at the origin according to Slyvnyak’s
theorem [13]), α is the path loss exponent, Pt is the transmit
power of the source nodes and h is the power fast fading
coefficient, which is independent and identically distributed
(i.i.d.). The Rayleigh fading environment is considered
suitable for modeling fast fading in dense urban environments
[14]. For this reason, the amplitude fading

√
h is Rayleigh

distributed with a scale parameter σ = 1, thus h is
exponentially distributed with mean value µ. Therefore, a
node is considered connected with its nth nearest neighbor
(i.e., is able to decode a received message), when the received
signal to noise ratio (SNR) is higher than a threshold T , as it
is given in

SNRn =
Pt · h · r−αn

W
≥ T, (2)

where rn is the Euclidean distance between the two nodes and
W denotes an additive white Gaussian noise power, modeled
as a constant zero mean Gaussian random variable (RV).

Regarding the communication, illustrated in Fig. 1, we study
two routing mechanisms separated into three scenarios. In
the first scenario, shown in Fig. 1(a), each node communi-
cates with its nearest neighbor. This is the unicast routing
mechanism, in which a node is considered connected only if
the nearest neighbor can decode successfully the transmitted
message. The other two scenarios focus on the extreme cases
of K-anycast. In particular, in Fig. 1(b), we illustrate the
K-anycast scheme for K = 2. In this scenario, each node
communicates with its two nearest neighbors and the source
node is considered connected if at least one of the 2 nodes
is able to decode the received message. The third scenario,
depicted in Fig. 1(c), is the extreme K-anycast case for K = n
(i.e., broadcast). In this case, a source node broadcasts its
message to every node and it is considered connected if at least
one of the receivers is able to decode the message, regardless
of its proximity to the source node.

III. NETWORK CONNECTIVITY FOR
UNICAST AND K-ANYCAST ROUTING

In this section, we present the mathematical derivations of
the probability of connectivity for different routing mecha-
nisms. We derive i) an exact solution for the unicast routing
mechanism, ii) an approximation of the extreme case of the
K-anycast for K = 2, and iii) we provide insights on the
broadcast case (i.e., extreme case of K-anycast for K = n)



by deriving the mean node degree, which is useful for identi-
fying the minimum transmit power with which the probability
of connectivity is above zero. All metrics are essential for
describing the performance of large-scale networks.

According to [15], if the number of nodes n is high enough,
then the following expression holds:

Pcon = P (dmin ≥ 1), (3)

where dmin denotes the minimum node degree which is the
number of connections of the node with the fewest connec-
tions.

In order to determine if the minimum node degree of the net-
work is equal or higher than one, we need to know if all nodes
are connected with at least one of their neighbors. Therefore,
the probability that all nodes are connected to at least one
neighbor, assuming that there is statistical independence in
the wireless links, is

P (dmin ≥ 1) = P (SNRs ≥ T )n, (4)

where SNRs is the signal to noise ratio at the receiving node
that offers the strongest link.

In the absence of fading, due to the fact that the strongest
link is always offered by the nearest neighbor, it is sufficient
to identify whether the source node is able to connect with
its nearest neighbor. Following a similar approach as in [7],
it can be easily derived that the probability of connectivity in
the absence of fading is given by

Pcon =

(
1− e−λπ

(
Pt
TW

)2/α)n
. (5)

However, in our system model, all wireless links are subject
to fast fading. As a result, the nearest node has not necessarily
the strongest link due to the randomness that is introduced at
the received power from fading. Therefore, it is possible that
nodes located farther from the source node are able to decode
its messages, even though the nearest node may fail.

Hence, in this case, it is important to define the routing
mechanism that is used in the network, before proceeding to
the derivations of connectivity. Therefore, in the following,
we study the unicast and K-anycast for K = {2, n} routing
mechanisms, as discussed in Section II.

A. Unicast

In the unicast case, a node is considered connected only if
its nearest neighbor can decode successfully the transmitted
message. Therefore, a network is considered fully connected
if all n nodes are connected to their nearest neighbors. Thus,
the probability of connectivity is given by

Pcon = P (SNR1 ≥ T )n. (6)

Therefore, we have to derive the probability that the SNR of
a receiving node from its nearest neighbor is higher than a
threshold T

P (SNR1 ≥ T ) = P

(
Pth1r

−α
1

W
≥ T

)
, (7)

where h1 is the exponentially distributed RV for the Rayleigh
fading. In order to calculate this probability for every possible
value of r1, we need to employ the expected value of r1, as
follows:

P (SNR1 ≥ T ) = Er1
[
P

(
h1 ≥

TWrα

Pt

∣∣∣∣r = r1

)]
= (8a)

=

∫ ∞
0

P

(
h1 ≥

TWrα

Pt

)
f1(r)dr = (8b)

=

∫ ∞
0

e
−µTWrα

Pt 2λπre−λπr
2

dr, (8c)

where (8b) follows from integrating over all possible values of
r and (8c) follows from an exponentially distributed RV and
from (1) for n = 1. To solve the integral in (8c), we employ
the modified Gauss-Hermite quadrature [16]1, given by

∫ ∞
0

e−x
2

g(x)dx =

q∑
i=1

wig(xi), (9)

where xi are the roots and wi the weights of the quadrature
given in [16, Table II]. The accuracy of the results is set by
the degree q of the quadrature.

Therefore, by (6), (8c) and (9), the probability of connec-
tivity for the unicast routing mechanism is

Pcon =

(
q∑
i=1

2wixie
−µTWxαi

Pt(λπ)α/2

)n
. (10)

B. 2-anycast

The 2-anycast case is an extreme case of the K-anycast
routing mechanism. In order to derive the probability of
connectivity for this model, we have to follow a slightly
different approach i.e., to study if any of the two nearest nodes
is able to connect with the source node under study.

In the previous analysis, presented in Section III-A, if all
nodes have at least one connection with another node, the
network is connected. However, in the 2-anycast case, it is
required for every node to be connected with at least one out of
its two nearest nodes. Following [15], this can be expressed as

Pcon = (1− Pisol)n = (1− P (max(SNR1, SNR2) ≤ T ))n,
(11)

where Pisol is the probability that a node is isolated and
P (max(SNR1, SNR2) ≤ T ) is the probability of isolation
from the strongest link between the two nearest nodes, which

1In fact, there is a closed form solution for (8c) given by∫∞
0 e−ax

2
e−bxdx =

√
π
b

exp
(
a2

4b

)
Q

(
a√
2b

)
. However, it results in

indeterminate values for the extreme cases, due to the multiplication of a very
large number (i.e., Q-function) with a very small (i.e., exponential function).
Thus, we prefer the numerical solution given by the modified Gauss-Hermite
quadrature, which provides an accurate result for any case.



can be written as

P (max(SNR1, SNR2) ≤ T ) = (12a)
= P (SNR1 ≤ T, SNR2 ≤ T ) = (12b)

= P

(
h1 ≤

TWrα1
Pt

, h2 ≤
TWrα2
Pt

)
= (12c)

= Er1,r2
[
P

(
h1 ≤

TWxα

Pt
, h2 ≤

TWyα

Pt

∣∣∣∣x = r1, y = r2

)]
,

(12d)

where r1 and r2 denote the distance to the nearest and second
nearest neighbor, respectively. Due to the dependence between
r1 and r2, we will employ Jensen’s inequality which provides
a lower bound of (12a). Consequently, (12d) can be written as

Er1,r2
[
P

(
h1 ≤

TWxα

Pt
, h2 ≤

TWyα

Pt

∣∣∣∣x = r1, y = r2

)]
≥

(13a)

≥ P
(
h1 ≤

TWEr1 [x]α

Pt
, h2 ≤

TWEr2 [y]α

Pt

)
= (13b)

= P

(
h1 ≤

TWEr1 [x]α

Pt

)
P

(
h2 ≤

TWEr2 [y]α

Pt

)
, (13c)

where (13b) follows by applying Jensen’s inequality to (13a)
(i.e., it can be easily proven that (13a) is exponential, thus
convex) and (13c) by the independence between the RVs of
(13b).

Hence, we can proceed to calculate the probabilities given
in (13c). The mean value of the distance to the nth nearest
node is given by

Ern [r] =

∫ ∞
0

fn(r)rdr = (14a)

=

∫ ∞
0

2

Γ(n)
(λπ)nr2n−1e−λπr

2

rdr = (14b)

=
(2n)!

4nn!(n− 1)!
· 1√

λ
, (14c)

where (14b) follows using (1).
To derive the probabilities given in (12a), we follow the

same procedure as in (6)-(8a). Thus, (13a) can be written as

P (max(SNR1, SNR2) ≤ T ) ≥ (15a)

≥
(

1− P
(
h1 ≥

TEr1 [x]α

PtW−1

))(
1− P

(
h2 ≥

TEr2 [y]α

PtW−1

))
(15b)

=

(
1− e

−µTW
Pt(2

√
λ)α

)(
1− e

−µTW3α

Pt(4
√
λ)α

)
(15c)

where (15c) follows from the exponential distributed RV and
by applying (14c) into (15b). Therefore, according to (11),
the probability of connectivity for the 2-anycast scheme is
given by

Pcon =

(
1−

(
1− e

−µTW
Pt(2

√
λ)α

)(
1− e

−µTW3α

Pt(4
√
λ)α

))n
. (16)

C. Broadcast

The broadcast case is an extreme case of the K-anycast rout-
ing mechanism for K = n. In order to derive the probability
of connectivity for this scheme, a similar approach to Section
III-B could be applied. However, due to the complicated
analysis that is attributed to the correlation on the distances
among the nearest nodes, we will provide insights on this case,
using the mean node degree. The mean node degree dmean
represents the average number of nodes with which a source
node can successfully exchange messages. Using the definition
of the intensity measure [13], the expected number of nodes
E[N(B)] denotes the average number of nodes that fall in an
area B and it is given by

E[N(B)] =

∫
B

λ(x)dx = dmean. (17)

In order to ensure if a source node is connected with any
node, we have to confirm that the SNR at any receiving node
is higher than a threshold. Hence, the mean node degree can
be written as

dmean =

∫ ∞
0

∫ 2π

0

P (SNRx > T )λrdθdr = (18a)

= 2πλ

∫ ∞
0

P

(
hx >

TWrα

Pt

)
rdr = (18b)

= 2πλ

∫ ∞
0

e−
µTWrα

Pt rdr = (18c)

=
2πλ

α

(
Pt

µTW

)2/α

Γ

(
2

α

)
, (18d)

where in (18a) the integral is given in polar coordinates, with
SNRx we denote the SNR of a random receiver x and (18c)
follows from an exponentially distributed RV.

When dmean reaches the value of 1, each node of the
network has on average one neighbor in its range and the
connectivity probability starts to increase, as it will be also
verified by the simulations. Therefore, by taking advantage of
this metric, we can identify the minimum transmit power for
which the probability of connectivity for the broadcast case is
above zero, given by

Pt,min = µTW

(
α

2πλΓ( 2
α )

)2/α

. (19)

IV. ANALYTICAL AND SIMULATION RESULTS

In this section, we validate the results of the mathematical
analysis via extensive simulations and provide results regard-
ing the connectivity and the mean node degree of large-scale
randomly deployed WSNs. In the following, we present the
setup of the simulation and the results of our experiments.

A. Simulation Setup

We study the connectivity for two routing mechanisms (i.e.,
unicast, K-anycast for K = {2, n}). In all the experiments,
the channel fading gain is set at µ = 1, unless otherwise
stated, while the path loss exponent is set at α = 4, which is
a typical value for dense urban environments. The noise W



TABLE I:
SIMULATION PARAMETERS

Simulation Parameter Symbol Value

Path loss exponent α 4

Threshold ratio T −10 dB
Power fading coef. mean µ 1

Noise power W −70 dBm
Intensity λ [5 · 10−5, 50 · 10−5] per m2

Area A 1 km2

is fixed at −70 dBm and the decoding threshold T is set at
−10 dB. Moreover, the intensity of the PPP varies between
λ = 5 · 10−5 nodes per m2 and λ = 15 · 10−5 nodes per
m2 and the simulation area is set at A = 1 km2. Hence, the
number of nodes placed in the simulation area for the different
simulations, varies between n = λA = 50 and n = 500. The
system parameters are summarized in Table I.

B. Results

In order to validate the derivations of Section III, we
illustrate in Fig. 2 the connectivity for the unicast and 2-
anycast routing mechanisms in fading environments, as well
as, for comparison reasons, the theoretical and simulation
results of connectivity in the absence of fading. It can be seen
that a close match is achieved between theory and simulations
for a varying number of nodes in all cases. More specifically,
in Fig. 2(a), we can see that in the absence of fading, as
the number of nodes increases, the network achieves full
connectivity for lower transmit power levels. Also, in Fig. 2(b),
we present the impact of fading to the unicast scheme. In this
case, a higher transmit power is needed in order to achieve
the same level of connectivity as in Fig. 2(a). Furthermore,
we can see that the number of nodes has a less important role
in the presence of fading. This stems from the fact that, in the
absence of fading, as the node intensity increases, the distance
to the nearest neighbor (i.e., which is the strongest link in the
absence of fading) decreases. Nevertheless, connectivity is less
affected by the intensity in fading environments, due to the
randomness in the strength of the nearest neighbor link.

Similarly, in Fig. 2(c), we illustrate the connectivity of the 2-
anycast scheme. As we can see, the result of the mathematical
analysis follows the simulations, even though we use an
approximation for the calculation of the distance to the nearest
neighbors. In this case, the performance is improved (i.e.,
connectivity is achieved for a lower Pt), because the second
nearest node may contribute to the connectivity of the source
node when the nearest node fails. Therefore, the difference in
performance between Fig. 2(b) and Fig. 2(c), shows the effects
in the network connectivity of taking into account the second
nearest node in fading environments.

In Fig. 3, we validate the derivation of the mean node degree
and show an interesting result that indicates its importance in
the broadcast case. In this double y-axis figure, the leftmost
axis (green) corresponds to the mean node degree, while
the rightmost axis (blue) corresponds to the probability of
connectivity. As it can be seen, when the mean node degree
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Fig. 2: Validation of the mathematical analysis for n = 50 and
n = 150. a) Connectivity in the absence of fading, b) Unicast
case, c) 2-anycast case.
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Fig. 3: Mean node degree determines when the connectivity
probability is above zero in the broadcast case.

becomes equal to one, i.e., when on average every node has
one neighbor, the curve of Pcon starts to increase. Therefore, it
is possible to detect the transmit power that is required for the
network before the connectivity is lost, which provides useful
insights about connectivity in the broadcast case.

To continue with, in Fig. 4, we compare the two routing
mechanisms with fading for a varying number of nodes, in
order to see in more detail the performance of connectivity
for each case. As it was expected, Pcon is higher for lower
values of Pt as the number of nodes increases from n = 50
to n = 150. Moreover, we show the two extreme cases of the
K-anycast model, which is when K = 2 (i.e., 2-anycast) and
K = n (i.e., broadcast). At this point, we should point out that
the curves of Pcon for all the intermediate cases of K (i.e.,
from 3 to (n− 1)), would be plotted in between the extreme
cases. Furthermore, as the number of nodes increases, the
distance between the two extremes also increases. This stems
from the fact that it is more probable for the nearest node to be
also the one with the strongest link for a sparse network. On
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Fig. 5: Critical transmit power to achieve connectivity for the
unicast and the K-anycast for K = {2, n}.

the other hand, as the network becomes denser, more nodes are
within close proximity to a given node, therefore the likelihood
that the nearest neighbor has the strongest link decreases.

Finally, in large-scale randomly deployed WSNs, it is im-
portant to know the critical Pt for which the network remains
fully connected. Therefore, in Fig. 5, we present the critical
Pt versus the number of nodes in the WSN for the two routing
mechanisms. As it is illustrated, for the unicast model, if
200 nodes transmit at 30 dBm or more, the WSN will be
fully connected. On the other hand, in the 2-anycast model,
substantially less power is needed (i.e., ∼8 dBm) to achieve
the same probability of connectivity for the same number of
nodes. Interestingly, in the case of the broadcast model, where
a node is considered connected if it is connected with any of
the n nodes, we do not see a significant difference from the
2-anycast case. This is reasonable since, in most cases, the
strongest links are offered by the nearest neighbors. However,
as expected, the performance for the broadcast case is better
and a network with n = 200 is considered fully connected if
the nodes transmit their messages with approximately 5 dBm.

V. CONCLUSION

In this paper, we studied the connectivity of a large-scale
randomly deployed WSN under different routing mechanisms
(i.e., unicast, K-anycast for K = {2, n}). We analytically
derived two important metrics for end-to-end communica-
tions, i.e., the probability of connectivity and the mean node
degree and validated them through extensive Monte Carlo
simulations. Moreover, we compared the different routing
mechanisms and showed the circumstances under which a
large-scale network is connected. Finally, we illustrated with
simulations the significance of knowing the mean node degree
of a network by showing its effect on the broadcast routing
mechanism. As future work, we plan to continue further the
analysis of connectivity in such networks by deriving the
mathematical analysis for the broadcast case and also study the
energy efficiency of the aforementioned routing mechanisms.
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