44 research outputs found

    Effects of Raman scattering and attenuation in silica fiber-based parametric frequency conversion

    Full text link
    Four-wave mixing in the form of Bragg scattering (BS) has been predicted to enable quantum noise less frequency conversion by analytic quantum approaches. Using a semi-classical description of quantum noise that accounts for loss and stimulated and spontaneous Raman scattering, which are not currently described in existing quantum approaches, we quantify the impacts of these effects on the conversion efficiency and on the quantum noise properties of BS in terms of an induced noise figure (NF). We give an approximate closed-form expression for the BS conversion efficiency that includes loss and stimulated Raman scattering, and we derive explicit expressions for the Raman-induced NF from the semi-classical approach used here.Comment: 14 single col pages, 11 figure

    Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    Get PDF
    We explore theoretically the feasibility of using frequency conversion by sum- or difference-frequency generation, enabled by three- wave-mixing, for selectively multiplexing orthogonal input waveforms that overlap in time and frequency. Such a process would enable a drop device for use in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second- order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process, and employ Schmidt (singular- value) decompositions thereof to quantify its viability in functioning as a coherent waveform discriminator. We define a selectivity figure of merit in terms of the Schmidt coefficients, and use it to compare and contrast various parameter regimes via extensive numerical computations. We identify the most favorable regime (at least in the case of no pump chirp) and derive the complete analytical solution for the same. We bound the maximum achievable selectivity in this parameter space. We show that including a frequency chirp in the pump does not improve selectivity in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion.Comment: 24 pages, 20 figure

    Entanglement swapping for generation of heralded time-frequency-entangled photon pairs

    Get PDF
    Photonic time-frequency entanglement is a promising resource for quantum information processing technologies. We investigate swapping of continuous-variable entanglement in the time-frequency degree of freedom using three-wave mixing in the low-gain regime with the aim of producing heralded biphoton states with high purity and low multi-pair probability. Heralding is achieved by combining one photon from each of two biphoton sources via sum-frequency generation to create a herald photon. We present a realistic model with pulsed pumps, investigate the effects of resolving the frequency of the herald photon, and find that frequency-resolving measurement of the herald photon is necessary to produce high-purity biphotons. We also find a trade-off between the rate of successful entanglement swapping and both the purity and quantified entanglement resource (negativity) of the heralded biphoton state.Comment: 17 pages and 9 figures. Version 3 corrects an error in the count rate theory and calculations, fixes a few grammatical and typographical errors, improves formatting, and adds the journal referenc
    corecore