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Abstract: We analyse frequency conversion by Bragg scattering numerically including
Raman scattering. The frequency configuration that performs the best under influence of
Raman noise results in 95% conversion over a 3.25 THz bandwidth with a 2.5-dB noise figure.
© 2014 Optical Society of America
OCIS codes: 190.4380 Nonlinear optics, four-wave mixing; 270.2500 Fluctuations, relaxations, and noise.

A crucial feature of quantum communication networks is the ability to alter the temporal mode profile as well as the
frequency of a quantum state, while preserving other quantum properties [1]. It has been shown that the third-order
effect in optical fibers enables quantum frequency conversion (QFC) [2]. In this case, one uses two strong pumps
p and q that interact with a signal s and an idler i. They fulfill the energy conservation ωp + ωs = ωq + ωi, and
this specific setup is known as Bragg scattering (BS). BS has been studied extensively both for classical [3] and for
quantum signals [4, 5]. Using the third-order nonlinearity of silica fibers, BS also allows for QFC inside the low-loss
communication window, which we focus on in this paper.

Higher order dispersion (HOD) and Raman scattering (RS) are known to severely limit the efficiency and quality
of BS, but current analytical quantum approaches do not describe these effects. In [6], we presented a semi-classical
method for predicting the quantum noise properties of parametric processes: an ensemble of 105 fields are propagated
through a fiber using four coupled equations that describe four-wave mixing. Terms accounting for stimulated RS
and loss are also included. The ensemble resembles a coherent state, and in every numerical step, further fluctuations
are added to account for spontaneous RS and coupling to the vacuum state. This method allows us to evaluate the
conversion efficiency (CE) and the noise figure (NF) of the BS process including HOD, RS and loss. In this work,
we analyse frequency conversion of classical continuous wave signals that are situated on both the Stokes (S) and
anti-Stokes (AS) sides of the two pumps, which are driving the conversion.

Figure 1(a) shows four frequency configurations of BS, which are performing down conversion (DC) from the signal
to the idler, where ω0 is the zero-dispersion frequency. By changing ωs ↔ ωi and ωp ↔ ωq, up conversion (UC) is
achieved. Diagrams (i)-(ii) are denoted nearby BS, and (iii)-(iv) distant BS; in (i) and (iii), the signal and idler are in the
S configuration, and in (ii) and (iv), they are in the AS configuration. This distinction is important due to the asymmetry
of Raman scattering. Note that the conversion span in frequency is δ in (i)-(ii), but it is δ +2∆ in (iii)-(iv), see Fig. 1(a).
Figure 1(b) shows the Raman gain coefficient of silica (black), gR(Ωi j), taken from Ref. [7]; the phonon equilibrium
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Fig. 1: (a) Diagrams (i)-(iv) show four configurations of BS performing DC from signal til idler; δ is the distance
between side bands, ∆ is the distance between the zero-dispersion frequency and the closest wave component. (b)
Raman gain coefficient, phonon equilibrium number, and spontaneous RS rates spectra of silica.
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Fig. 2: (a) CE with RS and loss vs. ∆ for DC for the S side (i)+(iii) (blue) and the AS side (ii)+(iv) (red), and without
RS and loss (black). (b) NF for the same conditions inlcuding UC for the S side (orange) and the AS side (green).

number ni j
T = [exp(h̄|Ωi j|/kBT )−1]−1 (red), where Ωi j = ωi−ω j, h̄ is Planck’s constant, kB is Boltzmann’s constant,

and T is the temperature; and the S and AS spontaneous RS rates (blue). The latter are calculated as RS = (ni j
T +1)gi j

R
and RAS = ni j

T gi j
R [8]. From Fig. 1(b), we see that spontaneous RS is more likely to occur on the S side (solid) than the

AS side (dashed). Secondly, we observe two regions on the S side of lower spontaneous RS rate: at |Ωi j|< 1 THz and
near |Ωi j|= 5 THz.

Figure 2(a) shows the CE for each BS configuration in a L = 520 m fiber with a loss coefficient α = 0.4 dB/km,
fourth-order dispersion β4 = −2.5× 10−55 s4/m, and T = 300 K; all other parameters are taken from [5]. Uneven
dispersion terms cancel due to the symmetry of BS. For (i)-(ii) and (iii)-(iv), δ = 1.48 THz and δ = 0.25 THz,
respectively. HOD causes poor phase-matching for increasing ∆, hence the decreasing efficiency. In (i)-(ii), stimulated
RS causes the efficiency to increase at the S side (blue) and decrease at the AS side (red); in (iii)-(iv), stimulated RS
decreases the CE slightly for both configurations. All UC simulations were indistinguishable from their corresponding
DC curves and are therefore not shown.

Figure 2(b) shows the idler NF= SNRin
signal/SNRout

idler for all BS configurations; the UC curves for (iii)-(iv) are shown
for the S side (orange) and the AS side (green). The two curves of (i)-(ii) represent a compromise between Raman gain
and Raman noise: on the S side (blue), the idler receives a large amount of energy from the pumps, but also much noise.
On the AS side (red), the idler receives only a little noise, but gives energy to the pumps. The compromise favours the
(i) configuration. The NFs of (iii)-(iv) are all lower than the (i)-(ii) curves. Common for all of them is that the idlers are
closer to one pump but not any further from the other; hence, the combined effect of RS is smaller. The evolution of
the four curves may be understood from Figs. 1(b) and 2(a): the NF is increased in line with the curves of spontaneous
RS and with decreasing CE due to HOD and the consequent phase-mismatch. Therefore, observing the region of low
spontaneous RS around |Ωi j| = 5 THz, the low NF in (iii)-(iv) near ∆ = 1.5 THz is due to the combined effects of
spontaneous RS and dispersion, which increases the NF from ∆ < 1.5 THz and ∆ > 1.5 THz, respectively. Without RS
and loss (not shown) the NF is 0 dB at ∆ = 0 THz and increases below the respective curves with decreasing CE.

In conclusion, RS causes energy flow to or from the converted signal (the idler) depending on which configuration
(i)-(iv) is used. Spontaneous RS unavoidably adds excess noise to the four-wave mixing process with a NF & 2.2 dB,
which challenges the quantum state-preserving nature of BS. We have shown that to achieve the largest span of QFC
with the smallest contribution from stimulated and spontaneous RS, distant BS, diagrams (iii)-(iv), is clearly preferable
to nearby BS; specifically (iii) performing 3.25 THz DC with CE≈ 95% and NF≈ 2.5 dB.
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