709 research outputs found

    Honey bee genotypes and the environment

    Get PDF
    Although knowledge about honey bee geographic and genetic diversity has increased tremendously in recent decades (Meixner et al., 2013), the adaptation of honey bees to their local environment has not been well studied. The current demand for high economic performance of bee colonies with desirable behavioural characteristics contributes to changing the natural diversity via mass importations and an increasing practice of queen trade and colony movement. At the same time, there is also a growing movement in opposition to this trend, aimed at conserving the natural heritage of local populations, with on-going projects in several countries (Strange et al., 2008; Dall’Olio et al., 2008, De la Rúa et al., 2009)

    Renormalized SO(5) symmetry in ladders with next-nearest-neighbor hopping

    Full text link
    We study the occurrence of SO(5) symmetry in the low-energy sector of two-chain Hubbard-like systems by analyzing the flow of the running couplings (gg-ology) under renormalization group in the weak-interaction limit. It is shown that SO(5) is asymptotically restored for low energies for rather general parameters of the bare Hamiltonian. This holds also with inclusion of a next-nearest-neighbor hopping which explicitly breaks particle-hole symmetry provided one accounts for a different single-particle weight for the quasiparticles of the two bands of the system. The physical significance of this renormalized SO(5) symmetry is discussed.Comment: Final version: to appear in Phys. Rev. Lett., sched. Mar. 9

    Infrared properties of Active OB stars in the Magellanic Clouds from the Spitzer SAGE Survey

    Get PDF
    We present a study of the infrared properties of 4922 spectroscopically confirmed massive stars in the Large and Small Magellanic Clouds, focusing on the active OB star population. Besides OB stars, our sample includes yellow and red supergiants, Wolf-Rayet stars, Luminous Blue Variables (LBVs) and supergiant B[e] stars. We detect a distinct Be star sequence, displaced to the red, and find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We also find photometric variability among the active OB population and evidence for transitions of Be stars to B stars and vice versa. We furthermore confirm the presence of dust around all the supergiant B[e] stars in our sample, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs.Comment: 5 pages, 1 figure, to appear in the proceedings of the IAUS 272 on "Active OB stars: structure, evolution, mass loss and critical limits" (Paris, July 19-23, 2010), Cambridge University Press. Editors C. Neiner, G. Wade, G. Meynet and G. Peter

    An Extremely Bright Echo Associated With SN 2002hh

    Get PDF
    We present new, very late-time optical photometry and spectroscopy of the interesting Type II-P supernova, SN 2002hh, in NGC 6946. Gemini/GMOS-N has been used to acquire visible spectra at six epochs between 2004 August and 2006 July, following the evolution of the SN from age 661 to 1358 days. Few optical spectra of Type II supernovae with ages greater than one year exist. In addition, g'r'i' images were acquired at all six epochs. The spectral and photometric evolution of SN 2002hh has been very unusual. Measures of the brightness of this SN, both in the R and I bands as well as in the H-alpha emission flux, show no significant fading over an interval of nearly two years. The most straightforward explanation for this behavior is that the light being measured comes not only from the SN itself but also from an echo off of nearby dust. Echoes have been detected previously around several SNe but these echoes, at their brightest, were ~8 mag below the maximum brightness of the SN. At V~21 mag, the putative echo dominates the light of SN 2002hh and is only ~4 mag below the outburst's peak brightness. There is an estimated 6 magnitudes of total extinction in V towards SN 2002hh. The proposed explanation of a differential echo/SN absorption is inconsistent with the observed BVRI colors.Comment: 24 pages, 6 figures. Accepted for publication in the Ap

    Introduction to Random Matrices

    Get PDF
    These notes provide an introduction to the theory of random matrices. The central quantity studied is τ(a)=det(1−K)\tau(a)= det(1-K) where KK is the integral operator with kernel 1/\pi} {\sin\pi(x-y)\over x-y} \chi_I(y). Here I=⋃j(a2j−1,a2j)I=\bigcup_j(a_{2j-1},a_{2j}) and χI(y)\chi_I(y) is the characteristic function of the set II. In the Gaussian Unitary Ensemble (GUE) the probability that no eigenvalues lie in II is equal to τ(a)\tau(a). Also τ(a)\tau(a) is a tau-function and we present a new simplified derivation of the system of nonlinear completely integrable equations (the aja_j's are the independent variables) that were first derived by Jimbo, Miwa, M{\^o}ri, and Sato in 1980. In the case of a single interval these equations are reducible to a Painlev{\'e} V equation. For large ss we give an asymptotic formula for E2(n;s)E_2(n;s), which is the probability in the GUE that exactly nn eigenvalues lie in an interval of length ss.Comment: 44 page

    SPITZER SAGE Observations of Large Magellanic Cloud Planetary Nebulae

    Get PDF
    We present IRAC and MIPS images and photometry of a sample of previously known planetary nebulae (PNe) from the SAGE survey of the Large Magellanic Cloud (LMC) performed with the Spitzer Space Telescope. Of the 233 known PNe in the survey field, 185 objects were detected in at least two of the IRAC bands, and 161 detected in the MIPS 24 micron images. Color-color and color-magnitude diagrams are presented using several combinations of IRAC, MIPS, and 2MASS magnitudes. The location of an individual PN in the color-color diagrams is seen to depend on the relative contributions of the spectral components which include molecular hydrogen, polycyclic aromatic hydrocarbons (PAHs), infrared forbidden line emission from the ionized gas, warm dust continuum, and emission directly from the central star. The sample of LMC PNe is compared to a number of Galactic PNe and found to not significantly differ in their position in color-color space. We also explore the potential value of IR PNe luminosity functions (LFs) in the LMC. IRAC LFs appear to follow the same functional form as the well-established [O III] LFs although there are several PNe with observed IR magnitudes brighter than the cut-offs in these LFs.Comment: 18 pages, 10 figures, 3 tables, to be published in the Astronomical Journal. Additional online data available at http://www.cfa.harvard.edu/irac/publications

    The youngest massive protostars in the Large Magellanic Cloud

    Full text link
    We demonstrate the unique capabilities of Herschel to study very young luminous extragalactic young stellar objects (YSOs) by analyzing a central strip of the Large Magellanic Cloud obtained through the HERITAGE Science Demonstration Program. We combine PACS 100 and 160, and SPIRE 250, 350, and 500 microns photometry with 2MASS (1.25-2.17 microns) and Spitzer IRAC and MIPS (3.6-70 microns) to construct complete spectral energy distributions (SEDs) of compact sources. From these, we identify 207 candidate embedded YSOs in the observed region, ~40% never-before identified. We discuss their position in far-infrared color-magnitude space, comparing with previously studied, spectroscopically confirmed YSOs and maser emission. All have red colors indicating massive cool envelopes and great youth. We analyze four example YSOs, determining their physical properties by fitting their SEDs with radiative transfer models. Fitting full SEDs including the Herschel data requires us to increase the size and mass of envelopes included in the models. This implies higher accretion rates (greater than or equal to 0.0001 M_sun/yr), in agreement with previous outflow studies of high-mass protostars. Our results show that Herschel provides reliable longwave SEDs of large samples of high-mass YSOs; discovers the youngest YSOs whose SEDs peak in Herschel bands; and constrains the physical properties and evolutionary stages of YSOs more precisely than was previously possible.Comment: Main text: 4 pages, 3 figures, 1 table; Online material: 3 figures, 1 table; to appear in the A&A Herschel Special Issu
    • …
    corecore