98 research outputs found

    Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots

    Full text link
    The design and development of inexpensive highly efficient electrocatalysts for hydrogen production, underpins several emerging clean-energy technologies. In this work, for the first time, molybdenum disulfide (MoS2) nanodots have been synthesized by ionic liquid assisted grinding exfoliation of bulk platelets and isolated by sequential centrifugation. The nanodots have a thickness of up to 7 layers (4 nm) and an average lateral size smaller than 20 nm. Detailed structural characterization established that the nanodots retained the crystalline quality and low oxidation states of the bulk material. The small lateral size and reduced number of layers provided these nanodots with an easier path for the electron transport and plentiful active sites for the catalysis of hydrogen evolution reaction (HER) in acidic electrolyte. The MoS2 nanodots exhibited good durability and a Tafel slope of 61 mVdec-1 with an estimated onset potential of -0.09 V vs RHE, which are considered among the best values achieved for 2H phase. It is envisaged that this work may provide a simplistic route to synthesize a wide range of 2D layered nanodots that have applications in water splitting and other energy related technologies. KEYWORDS: MoS2 nanosheets, hydrogen evolution reaction, electrocatalysis, edges, nanodots, ionic liquid exfoliation, water splittingComment: Corresponding author: [email protected]. in ACS Applied Materials and Interfaces, 201

    Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding

    Full text link
    Bulk quantities of graphene nanosheets and nanodots have been selectively fabricated by mechanical grinding exfoliation of natural graphite in a small quantity of ionic liquids. The resulting graphene sheets and dots are solvent free with low levels of naturally absorbed oxygen, inherited from the starting graphite. The sheets are only two to five layers thick. The graphene nanodots have diameters in the range of 9-29 nm and heights in the range of 1-16 nm, which can be controlled by changing the processing time.Comment: * Corresponding authors: [email protected]; [email protected]

    A New Soil Sampling Design in Coastal Saline Region Using EM38 and VQT Method

    Get PDF
    Spatial sampling design based on the variability and distribution of soil properties is an important issue with the progress in precision agriculture and soil ecology. Electromagnetic induction (type EM38) and variance quad-tree (VQT) method were both applied to optimize the sampling scheme of soil salinity in a coastal reclamation field in north Jiangsu Province, China. Apparent soil electrical conductivity (ECa) measured with EM38 was used as an ancillary variable and the spatial distribution of ECa was used as priori information. The process and result of VQT algorithm analysis was illustrated and the obtained sampling strategy was validated using observed soil salinity. Then the spatial precision and sampling efficiency were evaluated. The result indicated that the spatial distribution of soil salinity produced with the VQT scheme was quite similar to that produced with total sampling sites, while sampling quantity of the former was reduced to approximately 1/2 of the latter. The spatial precision of VQT scheme was considerably higher than that of traditional grid method with respect to the same sampling number, and fewer samples were required for VQT scheme to obtain the same precision level. A 17.3% increase in sampling efficiency was achieved by VQT over grid method at the precision level of 90%. The VQT method was proved to be more efficient and economical because it can sample intensively or sparsely according to variation status in local areas. The associated application of EM38 and VQT method provides efficient tools and theoretical basis for saving sampling cost and improving sampling efficiency in coastal saline region and enriching soil ecology

    Effectiveness of Educational Interventions for Health Workers on Antibiotic Prescribing in Outpatient Settings in China: A Systematic Review and Meta-Analysis

    Get PDF
    Educational interventions are considered an important component of antibiotic stewardship, but their effect has not been systematically evaluated in outpatient settings in China. This research aims to evaluate the effectiveness of educational interventions for health workers on antibiotic prescribing rates in Chinese outpatient settings. Eight databases were searched for relevant randomized clinical trials, non-randomized trials, controlled before-after studies and interrupted time-series studies from January 2001 to July 2021. A total of 16 studies were included in the systematic review and 12 in the meta-analysis. The results showed that educational interventions overall reduced the antibiotic prescription rate significantly (relative risk, RR 0.72, 95% confidence interval, CI 0.61 to 0.84). Subgroup analysis demonstrated that certain features of education interventions had a significant effect on antibiotic prescription rate reduction: (1) combined with compulsory administrative regulations (RR With: 0.65 vs. Without: 0.78); (2) combined with financial incentives (RR With: 0.51 vs. Without: 0.77). Educational interventions can also significantly reduce antibiotic injection rates (RR 0.83, 95% CI 0.74 to 0.94) and the inappropriate use of antibiotics (RR 0.61, 95% CI 0.51 to 0.73). The limited number of high-quality studies limits the validity and reliability of the results. More high-quality educational interventions targeting the reduction of antibiotic prescribing rates are needed

    NH2+ implantations induced superior hemocompatibility of carbon nanotubes

    Get PDF
    NH(2)(+) implantation was performed on multiwalled carbon nanotubes (MWCNTs) prepared by chemical vapor deposition. The hemocompatibility of MWCNTs and NH(2)(+)-implanted MWCNTs was evaluated based on in vitro hemolysis, platelet adhesion, and kinetic-clotting tests. Compared with MWCNTs, NH(2)(+)-implanted MWCNTs displayed more perfect platelets and red blood cells in morphology, lower platelet adhesion rate, lower hemolytic rate, and longer kinetic blood-clotting time. NH(2)(+)-implanted MWCNTs with higher fluency of 1 × 10(16) ions/cm(2) led to the best thromboresistance, hence desired hemocompatibility. Fourier transfer infrared and X-ray photoelectron spectroscopy analyses showed that NH(2)(+) implantation caused the cleavage of some pendants and the formation of some new N-containing functional groups. These results were responsible for the enhanced hemocompatibility of NH(2)(+)-implanted MWCNTs

    Efficacy and safety of ciprofol for long-term sedation in patients receiving mechanical ventilation in ICUs: a prospective, single-center, double-blind, randomized controlled protocol

    Get PDF
    Introduction: Critically ill patients who receive mechanical ventilation after endotracheal intubation commonly experience discomfort and pressure. The major sedative drugs that are currently used in clinical practice present with many complications, such as hypotension, bradycardia, and respiratory depression. Ciprofol (HSK3486), which is a newly developed structural analog of propofol, is a short-acting gamma-aminobutyric acid (GABA) receptor agonist, and its mechanism of action is sedation or anesthesia by enhancing GABA-mediated chloride influx. The high efficacy of ciprofol for short-term sedation is comparable to that of propofol, and it has a relatively low incidence of adverse effects and high level of safety, which has been confirmed by multiple clinical studies. However, few studies have examined its safety and efficacy for long-term sedation. The purpose of the study is to evaluate the efficacy and safety of ciprofol for long-term sedation in mechanically ventilated patients.Methods: A prospective, single-center, double-blind, randomized, propofol-controlled, non-inferiority trial is proposed. The study will enroll 112 mechanically ventilated patients hospitalized in the intensive care unit (ICU) of the Shanghai Fourth People’s Hospital affiliated with Tongji University based on the inclusion and exclusion criteria of the study, and randomly assign them to a group sedated with either ciprofol or propofol. The primary outcome is the percentage of time spent under target sedation, and secondary outcomes include drug dose, number of cases requiring additional dextrometropine, incidence of systolic blood pressure <80 or >180 mmHg, incidence of diastolic blood pressure <50 or >100 mmHg, incidence of heart rate <50 beats per minute (bpm) or >120 bpm, inflammatory indicators, blood lipid levels, liver and kidney functions, nutritional indicators, ventilator-free days within the 7-day period after enrollment, 28-day mortality, ICU stay duration, and hospitalization costs.Discussion: We hypothesize that the efficacy and safety of ciprofol for long-term sedation in mechanically ventilated ICU patients will not be inferior to that of propofol.Trial registration: Chinese Clinical Trials Registry identifier ChiCTR2200066951

    Preparation and electrochemical properties of pomegranate-shaped Fe₂O₃/C anodes for li-ion batteries

    Full text link
    Due to the severe volume expansion and poor cycle stability, transition metal oxide anode is still not meeting the commercial utilization. We herein demonstrate the synthetic method of core-shell pomegranate-shaped Fe2O3/C nano-composite via one-step hydrothermal process for the first time. The electrochemical performances were measured as anode material for Li-ion batteries. It exhibits excellent cycling performance, which sustains 705 mAh g-1 reversible capacities after 100 cycles at 100 mA g-1. The anodes also showed good rate stability with discharge capacities of 480 mAh g-1 when cycling at a rate of 2000 mA g-1. The excellent Li storage properties can be attributed to the unique core-shell pomegranate structure, which can not only ensure good electrical conductivity for active Fe2O3, but also accommodate huge volume change during cycles as well as facilitate the fast diffusion of Li ion

    The Effects of Exfoliation, Organic Solvents and Anodic Activation on Catalytic Hydrogen Evolution Reaction of Tungsten Disulfide

    Get PDF
    International audienceThe rational design of transition metal dichalcogenide electrocatalysts for efficiently catalyzing hydrogen evolution reaction (HER) is believed to lead to the generation of a renewable energy carrier. To this end our work has made three main contributions. At first, we have demonstrated that exfoliation via ionic liquid assisted grinding combined with gradient centrifugation is an efficient method to exfoliate bulk WS2 to nanosheets with a thickness of a few atomic layers and lateral size dimensions in the range of 100 nm to 2 nm. These WS2 nanosheets decorated with scattered nanodots exhibited highly enhanced catalytic performance for HER with an onset potential of-130 mV vs. RHE, an overpotential of 337 mV at 10 mA cm-2 and a Tafel slope of 80 mV dec-1 in 0.5 M H2SO4. Secondly, we found a strong aging effect on the electrocatalytic performance of WS2 stored in high boiling point organic solvents such as dimethylformamide (DMF). Importantly, the HER ability could be recovered by removing the organic (DMF) residues, which obstructed the electron transport, with acetone. Thirdly, we established that the HER performance of WS2 nanosheets/nanodots could be significantly enhanced, by activating the electrode surface at a positive voltage for a very short time (60 s), decreasing the kinetic overpotential by more than 80 mV at 10 mA cm-2. The performance enhancement was found to arise primarily from the ability of a formed proton-intercalated amorphous tungsten trioxide (a-WO3) to provide additional active sites and favourably modify the immediate chemical environment of the WS2 catalyst, rendering it more favorable for local proton delivery and/or transport to the active edge site of WS2. Our results provide new insights into the effects of organic solvents and electrochemical activation on the catalytic performance of two-dimensional WS2 for HER

    The common rs9939609 variant of the fat mass and obesity-associated gene is associated with obesity risk in children and adolescents of Beijing, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous genome-wide association studies for type 2 diabetes susceptibility genes have confirmed that a common variant, rs9939609, in the fat mass and obesity associated (<it>FTO</it>) gene region is associated with body mass index (BMI) in European children and adults. A significant association of the same risk allele has been described in Asian adult populations, but the results are conflicting. In addition, no replication studies have been conducted in children and adolescents of Asian ancestry.</p> <p>Methods</p> <p>A population-based survey was carried out among 3503 children and adolescents (6-18 years of age) in Beijing, China, including 1229 obese and 2274 non-obese subjects. We investigated the association of rs9939609 with BMI and the risk of obesity. In addition, we tested the association of rs9939609 with weight, height, waist circumference, waist-to-height ratio, fat mass percentage, birth weight, blood pressure and related metabolic traits.</p> <p>Results</p> <p>We found significant associations of rs9939609 variant with weight, BMI, BMI standard deviation score (BMI-SDS), waist circumference, waist-to-height ratio, and fat mass percentage in children and adolescents (<it>p </it>for trend = 3.29 × 10<sup>-5</sup>, 1.39 × 10<sup>-6</sup>, 3.76 × 10<sup>-6</sup>, 2.26 × 10<sup>-5</sup>, 1.94 × 10<sup>-5</sup>, and 9.75 × 10<sup>-5</sup>, respectively). No significant associations were detected with height, birth weight, systolic and diastolic blood pressure and related metabolic traits such as total cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol and fasting plasma glucose (all <it>p </it>> 0.05). Each additional copy of the rs9939609 A allele was associated with a BMI increase of 0.79 [95% Confidence interval (CI) 0.47 to 1.10] kg/m<sup>2</sup>, equivalent to 0.25 (95%CI 0.14 to 0.35) BMI-SDS units. This rs9939609 variant is significantly associated with the risk of obesity under an additive model [Odds ratio (OR) = 1.29, 95% CI 1.11 to 1.50] after adjusting for age and gender. Moreover, an interaction between the <it>FTO</it> rs9939609 genotype and physical activity (<it>p </it>< 0.001) was detected on BMI levels, the effect of rs9939609-A allele on BMI being (0.95 ± 0.10), (0.77 ± 0.08) and (0.67 ± 0.05) kg/m<sup>2</sup>, for subjects who performed low, moderate and severe intensity physical activity.</p> <p>Conclusion</p> <p>The <it>FTO </it>rs9939609 variant is strongly associated with BMI and the risk of obesity in a population of children and adolescents in Beijing, China.</p
    corecore