1,148 research outputs found

    The Finite Temperature SU(2) Savvidy Model with a Non-trivial Polyakov Loop

    Full text link
    We calculate the complete one-loop effective potential for SU(2) gauge bosons at temperature T as a function of two variables: phi, the angle associated with a non-trivial Polyakov loop, and H, a constant background chromomagnetic field. Using techniques broadly applicable to finite temperature field theories, we develop both low and high temperature expansions. At low temperatures, the real part of the effective potential V_R indicates a rich phase structure, with a discontinuous alternation between confined (phi=pi) and deconfined phases (phi=0). The background field H moves slowly upward from its zero-temperature value as T increases, in such a way that sqrt(gH)/(pi T) is approximately an integer. Beyond a certain temperature on the order of sqrt(gH), the deconfined phase is always preferred. At high temperatures, where asymptotic freedom applies, the deconfined phase phi=0 is always preferred, and sqrt(gH) is of order g^2(T)T. The imaginary part of the effective potential is non-zero at the global minimum of V_R for all temperatures. A non-perturbative magnetic screening mass of the form M_m = cg^2(T)T with a sufficiently large coefficient c removes this instability at high temperature, leading to a stable high-temperature phase with phi=0 and H=0, characteristic of a weakly-interacting gas of gauge particles. The value of M_m obtained is comparable with lattice estimates.Comment: 28 pages, 5 eps figures; RevTeX 3 with graphic

    Induced Universal Properties and Deconfinement

    Full text link
    We propose a general strategy to determine universal properties induced by a nearby phase transition on a non-order parameter field. A general renormalizable Lagrangian is used, which contains the order parameter and a non-order parameter field, and respects all the symmetries present. We investigate the case in which the order parameter field depends only on space coordinates and the case in which this field is also time dependent. We find that the spatial correlators of the non-order parameter field, in both cases, are infrared dominated and can be used to determine properties of the phase transition. We predict a universal behavior for the screening mass of a generic singlet field, and show how to extract relevant information from such a quantity. We also demonstrate that the pole mass of the non-order parameter field is not infrared sensitive. Our results can be applied to any continuous phase transition. As an example we consider the deconfining transition in pure Yang-Mills theory, and show that our findings are supported by lattice data. Our analysis suggests that monitoring the spatial correlators of different hadron species, more specifically the derivatives of these, provides an efficient and sufficient way to experimentally uncover the deconfining phase transition and its features.Comment: Added computational details and improved the text. The results are unchange

    Quark number susceptibilities: lattice QCD versus PNJL model

    Get PDF
    Quark number susceptibilities at finite quark chemical potential are investigated in the framework of the Polyakov-loop-extended Nambu Jona-Lasinio (PNJL) model. A detailed comparison is performed between the available lattice data, extrapolated using a Taylor expansion around vanishing chemical potential, and PNJL results consistently obtained from a Taylor series truncated at the same order. The validity of the Taylor expansion is then examined through a comparison between the full and truncated PNJL model calculations.Comment: 8 pages, 2 figure

    QGP Susceptibilities from PNJL Model

    Full text link
    An improved version of the PNJL model is used to calculate various thermodynamical quantities, {\it viz.}, quark number susceptibility, isospin susceptibility, specific heat, speed of sound and conformal measure. Comparison with Lattice data is found to be encouraging.Comment: 4 pages, 2 figures, poster presented at Quark Matter'0

    Universality in Random Walk Models with Birth and Death

    Get PDF
    Models of random walks are considered in which walkers are born at one location and die at all other locations with uniform death rate. Steady-state distributions of random walkers exhibit dimensionally dependent critical behavior as a function of the birth rate. Exact analytical results for a hyperspherical lattice yield a second-order phase transition with a nontrivial critical exponent for all positive dimensions D≠2, 4D\neq 2,~4. Numerical studies of hypercubic and fractal lattices indicate that these exact results are universal. Implications for the adsorption transition of polymers at curved interfaces are discussed.Comment: 11 pages, revtex, 2 postscript figure

    Two-point functions for SU(3) Polyakov Loops near T_c

    Full text link
    We discuss the behavior of two point functions for Polyakov loops in a SU(3) gauge theory about the critical temperature, T_c. From a Z(3) model, in mean field theory we obtain a prediction for the ratio of masses at T_c, extracted from correlation functions for the imaginary and real parts of the Polyakov loop. This ratio is m_i/m_r = 3 if the potential only includes terms up to quartic order in the Polyakov loop; its value changes as pentic and hexatic interactions become important. The Polyakov Loop Model then predicts how m_i/m_r changes above T_c.Comment: 5 pages, no figures; reference adde

    Phenomenological Equations of State for the Quark-Gluon Plasma

    Full text link
    Two phenomenological models describing an SU(N) quark-gluon plasma are presented. The first is obtained from high temperature expansions of the free energy of a massive gluon, while the second is derived by demanding color neutrality over a certain length scale. Each model has a single free parameter, exhibits behavior similar to lattice simulations over the range T_d - 5T_d, and has the correct blackbody behavior for large temperatures. The N = 2 deconfinement transition is second order in both models, while N = 3,4, and 5 are first order. Both models appear to have a smooth large-N limit. For N >= 4, it is shown that the trace of the Polyakov loop is insufficient to characterize the phase structure; the free energy is best described using the eigenvalues of the Polyakov loop. In both models, the confined phase is characterized by a mutual repulsion of Polyakov loop eigenvalues that makes the Polyakov loop expectation value zero. In the deconfined phase, the rotation of the eigenvalues in the complex plane towards 1 is responsible for the approach to the blackbody limit over the range T_d - 5T_d. The addition of massless quarks in SU(3) breaks Z(3) symmetry weakly and eliminates the deconfining phase transition. In contrast, a first-order phase transition persists with sufficiently heavy quarks.Comment: 22 pages, RevTeX, 9 eps file

    Thermodynamics of the PNJL model

    Get PDF
    QCD thermodynamics is investigated by means of the Polyakov-loop-extended Nambu Jona-Lasinio (PNJL) model, in which quarks couple simultaneously to the chiral condensate and to a background temporal gauge field representing Polyakov loop dynamics. The behaviour of the Polyakov loop as a function of temperature is obtained by minimizing the thermodynamic potential of the system. A Taylor series expansion of the pressure is performed. Pressure difference and quark number density are then evaluated up to sixth order in quark chemical potential, and compared to the corresponding lattice data. The validity of the Taylor expansion is discussed within our model, through a comparison between the full results and the truncated ones.Comment: 6 pages, 5 figures, Talk given at the Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2006), Villasimius, Italy, 15-20 May 200
    • …
    corecore