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Abstract

Quark number susceptibilities at finite quark chemical potential are investigated in the framework of the Polyakov-loop-extended Nambu–
Jona-Lasinio (PNJL) model. A detailed comparison is performed between the available lattice data, extrapolated using a Taylor expansion around
vanishing chemical potential, and PNJL results consistently obtained from a Taylor series truncated at the same order. The validity of the Taylor
expansion is then examined through a comparison between the full and truncated PNJL model calculations.
© 2007 Elsevier B.V. Open access under CC BY license.
Investigations of QCD thermodynamics using lattice simula-
tions predict a transition from the hadronic to the quark–gluon
phase around a critical temperature of 0.2 GeV, at vanishing
quark chemical potential μq . This transition is signalled by a
steep rise in energy density, pressure and entropy density as
functions of the temperature, and known to be a crossover [1]
when quarks are included.

Based on model calculations [2] as well as lattice QCD sim-
ulations [3], the existence of a critical point in the phase di-
agram is suggested. The precise location of this point is still
under debate. It can possibly be identified by observables that
are sensitive to singular parts of the free energy [4], such as
quark number susceptibilities. Such susceptibilities have been
studied both in lattice calculations [5,6], and using phenomeno-
logical models [7–10]. Both diagonal and off-diagonal suscep-
tibilities can serve as useful diagnostics to elucidate the nature
of strongly interacting matter [11].

The first lattice results for quark number susceptibilities at
finite chemical potential have been obtained in [5] through the
Taylor expansion method. An expansion of the pressure in pow-
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ers of μq/T around μq = 0 was performed up to fourth order
in μq/T . Quark number susceptibilities were then obtained as
second derivatives of the pressure with respect to the chemi-
cal potential. The presence of a peak in these observables at
large chemical potentials has been interpreted as a signal of
growing fluctuations in the baryon density, as the critical point
is approached. Improvements were implemented in [6] by ex-
panding the pressure up to sixth order in μq/T . In this case,
the peak was shifted to a smaller temperature, and a dip was
observed at T ∼ 1.05Tc which, together with the increased er-
ror bars in the extrapolated lattice data, made the presence of
the peak less convincing.

In the present Letter we investigate quark number sus-
ceptibilities within the Polyakov-loop-extended Nambu–Jona-
Lasinio (PNJL) model [12–15] which has recently been used
successfully in comparisons with a variety of lattice QCD data
[16–21]. In this model, quarks propagate in a temporal back-
ground gauge field representing Polyakov loop dynamics, while
developing at the same time a dynamical mass through their
coupling to the chiral condensate. Here we present results for
the quark number susceptibilities at finite chemical potential.
A comparison is first performed with truncated Taylor expan-
sions in μq/T derived from lattice QCD. Then the convergence
properties of the Taylor series are examined by comparison with
the full, non-truncated PNJL result.
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The Euclidean action of the two-flavor PNJL model is

SE

(
ψ,ψ†, φ

)

=
β=1/T∫

0

dτ

∫
V

d3x
[
ψ†∂τψ +H

(
ψ,ψ†, φ

)]

(1)− V

T
U(φ,T ).

Here H is the fermionic Hamiltonian density given by:

(2)H = −iψ†(�α · �∇ + γ4m0 − φ)ψ + V
(
ψ,ψ†),

where ψ is the Nf = 2 doublet quark field, �α = γ0 �γ and
γ4 = iγ0 in terms of the standard Dirac γ matrices and
m0 = diag(mu,md) is the quark mass matrix. V(ψ,ψ†) is an
SU(2) × SU(2) invariant four-fermion interaction acting in the
pseudoscalar–isovector/scalar–isoscalar quark–antiquark chan-
nel1

(3)V
(
ψ,ψ†) = −G

2

[
(ψ̄ψ)2 + (ψ̄iγ5 �τψ)2].

The quarks move in a background color gauge field φ ≡
A4 = iA0, where A0 = δμ0gAμ

a ta with the SU(3)c gauge fields
Aμ

a and the generators ta = λa/2. The matrix valued, constant
field φ relates to the (traced) Polyakov loop as follows:

(4)Φ = 1

Nc

Tr

[
P exp

(
i

β∫
0

dτ A4

)]
= 1

3
Tr eiφ/T .

In a convenient gauge (the so-called Polyakov gauge), one can
choose a diagonal representation for the matrix φ,

(5)φ = φ3λ3 + φ8λ8,

which leaves only two independent variables, φ3 and φ8.
The term −(V/T )U of the action (1) involves the effective

potential U(Φ,Φ∗, T ) which controls the thermodynamics of
the Polyakov loop. An improved form for this effective poten-
tial was introduced in our previous work [20]. It involves the
logarithm of J (Φ), the Jacobi determinant which results from
integrating out six non-diagonal SU(3) generators while keep-
ing the two diagonal ones, φ3,8, to represent Φ:

U(Φ,Φ∗, T )

T 4

= −1

2
a(T )Φ∗Φ + b(T ) ln

[
1 − 6Φ∗Φ

(6)+ 4
(
Φ∗3 + Φ3) − 3

(
Φ∗Φ

)2]
with

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

,

(7)b(T ) = b3

(
T0

T

)3

.

1 The scalar diquark interaction that has been considered in [20] is not rele-
vant in the present discussion since the range of chemical potentials explored
here is lower than the critical μq for diquark condensation.
The logarithmic divergence of U(Φ,Φ∗, T ) as Φ,Φ∗ → 1 au-
tomatically limits the Polyakov loop Φ to be always smaller
than 1, reaching this value asymptotically only as T → ∞. The
parameters ai and b3 are taken from Ref. [20], where they were
determined to reproduce lattice data for the thermodynamics of
pure gauge lattice QCD up to about twice the critical tempera-
ture.2 The resulting parameters are

a0 = 3.51, a1 = −2.47, a2 = 15.22,

b3 = −1.75.

The critical temperature T0 for deconfinement in the pure gauge
sector is fixed at 270 MeV in agreement with lattice results.

The NJL part of the model involves three parameters: the
bare quark mass which we take equal for u- and d-quarks, the
coupling strength G and a three-momentum cutoff Λ. We take
those from Ref. [14]:

mu,d = 5.5 MeV, G = 10.1 GeV−2,

Λ = 0.65 GeV,

fixed to reproduce the pion mass and decay constant in vacuum
and the chiral condensate as mπ = 139.3 MeV, fπ = 92.3 MeV
and 〈ψ̄uψu〉 = −(251 MeV)3.

After performing a bosonization of the PNJL action and in-
troducing scalar and pseudoscalar auxiliary fields, σ and �π , the
PNJL thermodynamic potential becomes:

Ω
(
T ,μq,σ,Φ,Φ∗)
= U

(
Φ,Φ∗, T

) + σ 2

2G

− 2Nf

∫
d3p

(2π)3

{
T ln

[
1 + 3Φe−(Ep−μq)/T

+ 3Φ∗e−2(Ep−μq)/T + e−3(Ep−μq)/T
]

+ T ln
[
1 + 3Φ∗e−(Ep+μq)/T + 3Φe−2(Ep+μq)/T

(8)+ e−3(Ep+μq)/T
] + 3�Epθ

(
Λ2 − �p2)},

where the quark quasiparticle energy is Ep = √ �p2 + m2 and
the dynamical (constituent) quark mass is the same as in the
standard NJL model: m = m0 − σ = m0 − G〈ψ̄ψ〉. The last
term in the previous equation involves the difference �Ep be-
tween the quasiparticle energy Ep and the energy of free fermi-
ons (quarks). It is understood that for three-momenta | �p| above
the cutoff Λ where NJL interactions are “turned off”, σ is set
to zero.

In general, the Euclidean action SE is formally complex in
the presence of the temporal gauge field φ [22,23]. It is real
only at vanishing chemical potential, μq = 0. At nonvanishing
chemical potential one has in addition 〈Φ〉 �= 〈Φ∗〉 [24]. Fluc-
tuations beyond mean field are at the origin of 〈Φ〉 �= 〈Φ∗〉 for
μq �= 0 (see the more detailed discussion in [20]). This Let-
ter deals with self-consistent solutions and predictions of the

2 At much higher temperatures, where transverse gluons begin to dominate,
the PNJL model is not supposed to be applicable.
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Fig. 1. Scaled quark number susceptibility χq as function of T/Tc for different values of μq/T . The curves are PNJL model results obtained from the Taylor series
expansion in μq/T around μq = 0 (see Eq. (12)). Corresponding lattice data are taken from Ref. [6].
mean-field equations

(9)
∂ ReΩ

∂ϕ
= 0

with ϕ = σ,φ3, φ8. At this mean field level, the additional con-
straint of φi being real implies that the action is minimized
by φ8 = 0. It follows that Φ ∼ Tr exp(iλ3φ3/T ) is real (i.e.
Φ = Φ∗ at the mean field level). The temperature dependence
of the Polyakov loop and chiral condensate, obtained from
Eq. (9) can be found in Ref. [20]. In a forthcoming paper [25]
we demonstrate the stability of results to fluctuations beyond
mean field (which imply 〈Φ〉 �= 〈Φ∗〉). We anticipate at this
point that the effects of such fluctuations do not produce quali-
tative changes in our conclusions, in particular those concerning
the susceptibilities discussed in the following.

A Taylor expansion of the pressure in μq/T has been per-
formed in Ref. [20] in order to compare with corresponding
lattice data [6]. The pressure is written as a series

p(T ,μq)

T 4
=

∞∑
n=0

cn(T )

(
μq

T

)n

,

(10)cn(T ) = 1

n!
∂n(p(T ,μq)/T 4)

∂(μq/T )n

∣∣∣∣
μq=0

.

The Taylor expansion coefficients c2, c4 and c6, calculated in
the PNJL model, turn out to agree very well with the corre-
sponding lattice data.

The PNJL model calculations can provide useful insights
concerning the convergence of the expansion (10). The sign
problem at non-zero chemical potential restricts lattice QCD
thermodynamics to extrapolations including only the first few
terms of Eq. (10), whereas the model is not restricted to such
truncations. In Ref. [18] we have shown that, for the pres-
sure, very good agreement is reached between the full result
and the truncated one, already at fourth order in μq/T and
up to μq/T ∼ 1. In the case of the quark number density, the
agreement is still very good at small chemical potentials, but
discrepancies are observed at large μq/T in the vicinity of the
phase transition.
In the present Letter we investigate the quark number sus-
ceptibilities defined as

(11)
χq(T ,μq)

T 2
= ∂2(p/T 4)

∂(μq/T )2
.

The isospin-symmetric case is considered, with equal chemi-
cal potential for up and down quarks. The full result for χq is
compared with the truncated one given by the Taylor expansion

(12)
χq(T ,μq)

T 2
= 2c2 + 12c4

(
μq

T

)2

+ 30c6

(
μq

T

)4

.

In Fig. 1 we show a comparison between truncated PNJL re-
sult obtained from Eq. (12), and the corresponding lattice data,
consistently expanded to the same order in μq/T . One finds
remarkably good agreement between the lattice data and the
PNJL predictions. At large chemical potential μq/T ∼ 1 we
observe, consistently with the lattice data, a pronounced peak
slightly below Tc, followed by a dip around T ∼ 1.05Tc. This
feature was also discussed in [6].

Fig. 2 presents a study of the convergence of the Taylor
expansion in μ̃ = μq/T . A comparison is made between full
PNJL results and those truncated at fourth and sixth order in
μ̃, for a sequence of chemical potentials 0.4 � μq/T � 1. For
low chemical potentials, the agreement between the full re-
sult and the truncated one is rather good. Only in the case of
μq/T = 0.6 and in the region of T around the phase transition,
the first discrepancies start to appear.

The right panel of Fig. 2 shows a comparison between the
full PNJL result (continuous line), the one truncated at fourth
order (dashed line) and the one truncated at sixth order (dot-
ted line) for μq/T = 1. Evidently, the Taylor series converges
badly in the region around the phase transition. The full result
shows a peak, not a divergence, around T/Tc ∼ 0.9, indicating
that the critical temperature for the phase transition decreases
with increasing chemical potential. The coefficient c6 is size-
able around the phase transition, so that the sixth-order contri-
bution differs significantly from that of fourth order. The dip
above Tc occurring at sixth order is entirely an effect of the
truncation of the series. It is absent in the full result. It reflects
the corresponding dip exhibited by c6: in the fourth-order re-
sult (dashed line) it is in fact absent as well. The height of the
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Fig. 2. Left: comparison between the full and truncated PNJL results for two different (small) chemical potentials. Right: comparison between full and truncated
results, at different orders, for μq/T = 1 (see Eq. (12)).
peak in the full result is much reduced as compared to the cor-
responding one found at sixth order. No divergence is observed
in the full result. In fact, our model predicts that the phase tran-
sition is a crossover, for this value of μq . The position of the
calculated critical point [20] in the (T ,μ) plane is at (0.13,
0.31) GeV. As shown in [20], the location of this point depends
sensitively on the quark mass and on the effects induced by the
Polyakov loop. The present analysis indicates that the truncated
χq can be misleading in the sense that it incorrectly suggests the
possibility of a first-order transition which is not realized in the
full susceptibility.

From the present work we can draw the following conclu-
sions. The available lattice results for quark number susceptibil-
ities at finite chemical potential, obtained from a Taylor expan-
sion in μq/T around μq = 0, can be successfully reproduced in
the framework of the PNJL model through an analogous Taylor
expansion truncated at the same order in μq/T . The compari-
son between the full PNJL result at finite chemical potential and
the truncated one shows good convergence of the Taylor series
up to μq/T � 0.4–0.6. For larger values of μq/T , significant
discrepancies are observed between full and truncated results in
the region around the phase transition. The singular behaviour
of the susceptibilities observed in the sixth-order result is not
present in the full calculation. The transition predicted by our
model for μq/T = 1 is still a crossover, reflected by the finite
height of the peak in the corresponding quark number suscepti-
bilities.
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