12 research outputs found

    A Common-Path Interferometer for Time-Resolved and Shot-Noise-Limited Detection of Single Nanoparticles

    Get PDF
    We give a detailed description of a novel method for time-resolved experiments on single non-luminescent nanoparticles. The method is based on the combination of pump-probe spectroscopy and a common-path interferometer. In our interferometer, probe and reference arms are separated in time and polarization by a birefringent crystal. The interferometer, fully described by an analytical model, allows us to separately detect the real and imaginary contributions to the signal. We demonstrate the possibilities of the setup by time-resolved detection of single gold nanoparticles as small as 10 nm in diameter, and of acoustic oscillations of particles larger than 40 nm in diameter

    Extending the bandwidth of optical-tweezers interferometry

    Get PDF
    The extension of the bandwidth of optical-tweezers interferometry was discussed. It was found that the detection bandwidth was extended to at least 100 KHz, either by using wavelengths below 850 nm or by using different detectors at longer wavelengths. The power spectral density of the Brownian motion of micron-sized beads in optical tweezers was also measured

    Systematic Evaluation of the Descriptive and Predictive Performance of Paediatric Morphine Population Models

    Get PDF
    Purpose: A framework for the evaluation of paediatric population models is proposed and applied to two different paediatric population pharmacokinetic models for morphine. One covariate model was based on a systematic covariate analysis, the other on fixed allometric scaling principles. Methods: The six evaluation criteria in the framework were 1) number of parameters and condition number, 2) numerical diagnostics, 3) prediction-based diagnostics, 4) η-shrinkage, 5) simulation-based diagnostics, 6) diagnostics of individual and population parameter estimates versus covariates, including measurements of bias and precision of the population values compared to the observed individual values. The framework entails both an internal and external model evaluation procedure. Results: The application of the framework to the two models resulted in the detection of overparameterization and misleading diagnostics based on individual predictions caused by high shrinkage. The diagnostic of individual and population parameter estimates versus covariates proved to be highly informative in assessing obtained covariate relationships. Based on the framework, the systematic covariate model proved to be superior over the fixed allometric model in terms of predictive performance. Conclusions: The proposed framework is suitable for the evaluation of paediatric (covariate) models and should be applied to corroborate the descriptive and predictive properties of these models

    The role of population PK-PD modelling in paediatric clinical research

    Get PDF
    Children differ from adults in their response to drugs. While this may be the result of changes in dose exposure (pharmacokinetics [PK]) and/or exposure response (pharmacodynamics [PD]) relationships, the magnitude of these changes may not be solely reflected by differences in body weight. As a consequence, dosing recommendations empirically derived from adults dosing regimens using linear extrapolations based on body weight, can result in therapeutic failure, occurrence of adverse effect or even fatalities. In order to define rational, patient-tailored dosing schemes, population PK-PD studies in children are needed. For the analysis of the data, population modelling using non-linear mixed effect modelling is the preferred tool since this approach allows for the analysis of sparse and unbalanced datasets. Additionally, it permits the exploration of the influence of different covariates such as body weight and age to explain the variability in drug response. Finally, using this approach, these PK-PD studies can be designed in the most efficient manner in order to obtain the maximum information on the PK-PD parameters with the highest precision. Once a population PK-PD model is developed, internal and external validations should be performed. If the model performs well in these validation procedures, model simulations can be used to define a dosing regimen, which in turn needs to be tested and challenged in a prospective clinical trial. This methodology will improve the efficacy/safety balance of dosing guidelines, which will be of benefit to the individual child
    corecore