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Abstract: We give a detailed description of a novel method for time-
resolved experiments on single non-luminescent nanoparticles. The method
is based on the combination of pump-probe spectroscopy and a common-
path interferometer. In our interferometer, probe and reference arms are
separated in time and polarization by a birefringent crystal. The interfer-
ometer, fully described by an analytical model, allows us to separately
detect the real and imaginary contributions to the signal. We demonstrate
the possibilities of the setup by time-resolved detection of single gold
nanoparticles as small as 10 nm in diameter, and of acoustic oscillations of
particles larger than 40 nm in diameter.
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1. Introduction

For the last 15 years, single-molecule spectroscopy has mainly focused on luminescence stud-
ies of fluorescent molecules and semiconductor nanocrystals [1]. In the last few years, however,
ever increasing interest in the properties and applications of metal nanoparticles (nanospheres,
nanorods, etc., with sizes between 1 and 100 nm) has stimulated the development of various
optical detection schemes for single metal nanoparticles. Two recent articles have reviewed the
general far-field optical methods for the detection of single nanoparticles [2], and more par-
ticularly the absorption and scattering-based methods [3]. An attractive characteristic of gold
nanoparticles is their high photostability. Unlike dyes or semiconductor nanocrystals, gold par-
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ticles do not suffer from photobleaching or photoblinking, which makes them appealing labels
for biophysicists [4]. Another strong motivation is the study of original physical properties of
metal nanoparticles, that often differ from those of the bulk metal, and to a large extent can
be tuned through the size and shape of the nanoparticle. This sensitivity to size and shape,
however, makes studies of ensembles of nanoparticles particularly vulnerable to distributions
in sizes, shapes, crystal defects, etc.. Isolating a single particle once and for all eliminates inho-
mogeneous broadening and any implicit averaging inherent to even the most carefully selected
ensembles. Only single-particle experiments permit to study a particle’s elastic interaction with
its specific close environment [5], to correlate optical and structural properties [6], or to obtain
new insight in their linear and nonlinear optical properties [7, 8, 9].

The number of available methods for the detection of single metal nanoparticles has grown
rapidly in the last few years [2]. Of all these methods, interferometric detection of the scattered
field seems very promising, mainly because the interferometric signal drops as the third power
of the particle size only, whereas the direct scattering signal drops as the sixth power, but also
for the possibility to detect the full complex response of a nanoparticle [5, 10]. In all interfero-
metric experiments, the field scattered by a single metal nanoparticle is mixed with a reference
field, but the methods differ in their choices for the reference and scattered field [3]. Using the
incident wave itself as a reference, one basically measures absorption [11]. Alternatively, the
reference wave can be the reflection from the substrate on which the particle has been deposited
[12], or an external reflection in a Michelson interferometer [13]. The signal wave can be either
directly scattered by the particle, or indirectly scattered from a local inhomogeneity of refrac-
tive index, for example induced by heat released by the excited particle into its surroundings,
as done in the photothermal method [14, 15]. In a recent work, we have used a common-path
interferometer to measure the time-resolved response of single gold nanoparticles down to a
10-nm diameter [5]. This sensitive technique allowed us to detect acoustic vibrations of single
gold nanoparticles. The present paper presents a more detailed description of our interferometer
and its full characterization.

In our common-path interferometer, probe and reference arms are spatially overlapped (in
contrast to, for example, Michelson and Mach-Zehnder interferometers [16]). The interfering
waves are distinguished on the basis of both polarization and time, although any single one
of these characteristics would in principle suffice. Temporal separations can be created via a
relative delay between laser pulses, as done here, or via a small phase shift between two CW
beams, as for example in phase-contrast microscopy [17], or by counter propagation in a Sagnac
ring interferometer, as was recently implemented by Hwang et al. [18], for the phase-sensitive
detection of very weak absorbers. The first implementation of a common-path interferometer
in combination with pulsed laser sources was published by LaGasse et al. [19] in an optical
switching experiment. In this experiment, the probe pulse was delayed by means of polarizing
beam splitters and mirrors. Patel et al. [20] have built a number of logical elements by using the
same technique, but with a birefringent fiber as a delay medium. Hurley and Wright [21] con-
structed a common-path interferometer based on a Sagnac interferometer, also using diversion
through polarizing beam splitters to split a pulse into probe and reference. Polarization analysis
allowed them to separately detect pump-induced changes in reflectivity and phase. Using this
method, the same group were able to image the progression of pump-induced acoustic waves
along a surface [22, 23].

We also rely on a polarization-induced delay between a probe pulse and a reference pulse,
but we use a birefringent crystal as beamsplitter. The main advantage of this element is its
simplicity and ease of alignment, which leads to a high contrast of the interference pattern.
The delay between the interfering wavetrains in combination with a pump-probe configuration
allows us to obtain information on ultrafast properties of the nanoparticles, and the high sensi-
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tivity and low noise floor enables experiments on single nanoparticles. By choosing the proper
configuration for the polarization optics of our interferometer, we can separate the detection of
amplitude and phase changes induced by a single nanoparticle on the probe pulse, and measure
the full complex response of the particle. Although we used our interferometer only for gold
nanoparticles so far, the method is in principle applicable to any absorbing and/or dispersing
nano-object.

The paper is organized as follows. Section 2 describes the experimental method. Section 3
provides a model description of the setup based on Jones algebra. In section 4 we discuss a
few experiments that were performed with the setup. In particular, we characterize the setup by
comparing data to the mathematical model (subsection 4.1), we perform a noise analysis show-
ing that our setup is detection-limited but very close to the photon-noise limit (subsection 4.2),
and we provide some examples of measurements on single gold nanoparticles (subsection 4.3).

2. Experimental Method

inref

lock-in

pump

AOM

delay line

BS

probe

10 ps

delay

detector
pol

λ/4
filter

calcite

calcite

sample

microscope

Fig. 1. Schematic drawing of the pump-probe common-path interferometer. A pump pulse
and a pair of reference and probe pulses are focused on the sample in a microscope. The
reference-probe pulses arise from a single pulse, split in time (10 ps delay) and polarization
by a properly oriented birefringent calcite crystal. The delay between the pump pulse and
the reference-probe pair can be scanned with a delay line. After the microscope, probe and
reference are recombined by a second crystal and their interference monitors pump-induced
changes in the optical properties of the sample. A quarter-wave plate (λ/4) and a polarizer
(pol) are independently rotated to set the working point of the interferometer. The other
details are described in the text.

We have designed a polarization-based common-path interferometer that uses two birefrin-
gent crystals to split and recombine the probe and reference waves [5]. A sketch of the setup
is shown in Fig. 1. A laser pulse that is initially polarized at 45 degrees from vertical is split
into two orthogonal polarization directions by the first calcite crystal, whose fast optical axis is
vertical. Propagation in the thick (15 mm) birefringent crystal delays one of the polarizations by
a time longer than the pulse length. This effectively creates two pulses, a probe and a reference,
which are orthogonally polarized and have a mutual delay of 10 ps. These pulses interact with
the sample (a glass coverslide on which nanoparticles are spincoated) in the microscope.

Behind the microscope, probe and reference are recombined by a second crystal, identical to
the first one but oriented perpendicularly, its fast axis now being horizontal. With an analyzer
assembly of a quarter-wave plate and a polarizer, the recombined waves are projected onto
the same polarization state and interfere. Independently rotating the quarter-wave plate and the
polarizer allows us to tune the relative contributions of the phase and amplitude of the probe
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and reference waves. The interference reports on changes of the sample over the time interval
between the probe and the reference pulses. In order to generate and accumulate the signal, we
induce a change of the sample by means of a separate laser pulse, in a pump-probe configura-
tion. This pump pulse (from a synchronous second laser source) is intensity-modulated by an
acoustic-optical modulator (AOM) and travels over a variable delay line, before it is overlapped
by a dichroic beam splitter (BS) with the probe beam. Dichroic filters efficiently prevent pump
light from reaching the detector. By varying the delay between the pump pulse and the pair of
probe and reference pulses, we can measure the ultrafast dynamics of our sample.

Let us schematically describe the working of the ideal interferometer with proper settings
of the analyzer assembly. If the sample does neither modify the phase nor the amplitude of
the probe with respect to those of the reference (e.g., if the pump laser is switched off, or
if there is no particle in the laser focus), the polarization state after recombination is again
linear, rotated by 45 degrees from the vertical. If we now switch on the pump laser while a
nanoparticle sits in the common focus of the two laser beams, a small change in the phase and/or
amplitude of the probe pulse will modify the polarization state after recombination, giving
rise to a slightly elliptical and/or rotated linear polarization. This changes the transmission
through the analyzer assembly. The change in polarization state is thus translated into a change
of intensity at the detector, which we can measure with a lock-in amplifier synchronized with
the pump’s modulation.

With the quarter-wave plate and the polarizer, we can tune the fraction of the light that
reaches the detector. If the quarter-wave plate has one of its optical axes parallel to the po-
larization direction of the incoming light, and if the polarizer is perpendicular to the incoming
polarization, the detected intensity is minimized, and the interferometer is in a dark fringe. By
rotating the polarizer by 90 degrees, we find a bright fringe, where the detected intensity has a
maximum. Besides tuning the fraction of probe light that reaches the detector, we can also use
the quarter-wave plate and the polarizer to select a working point where either phase or ampli-
tude modifications of the probe field by the sample can be detected, independently from each
other. If quarter-wave plate and polarizer are rotated in such a way that the amplitudes of the
interfering fields are equal, but the phases are different, the interference term will only report on
phase changes of the probe – assuming small changes to the fields as it is the case with nanopar-
ticles. Conversely, if the polarizer and the quarter-wave plate are tuned so that the amplitudes
are different while the phases are the same, the interferometer only senses amplitude changes
of the probe, while phase changes remain unnoticed. The precise orientations of the polarizer
and the quarter-wave plate for which the interferometer is either purely amplitude-sensitive or
purely phase-sensitive are calculated in section 3 using a model based on Jones matrices.

Key features of our interferometer are the birefringent crystals for temporal beam splitting
and recombination. Although they have the disadvantage that the delay between the probe and
the reference pulse is fixed, the alignment becomes much easier, since it is not necessary to
align the overlap of the spatial paths of the two interferometer arms. This considerably improves
the visibility of the interferometric fringes. The crystals are 15-mm thick calcite crystals, cut
from the same slab to make them as alike as possible. In order to keep the operation of the
interferometer stable, we had to actively stabilize the temperature difference between the two
crystals. No special temperature or mechanical stabilization is needed for the other elements in
the beam path as they affect probe and reference in exactly the same manner.

If there is a small difference between the optical path lengths through the crystals, either
because of a difference in orientation, temperature, or because of a difference in thickness (the
crystals are specified to be equally thick to within 1 μm), we will have to allow for a static
change in the polarization state of the probe beam after recombination. Instead of being linear
at 45 degrees, the recombined beam can be elliptically polarized with a rotated axis, even when
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the pump is off. A second static effect that must be taken into account is a residual difference
in the transmissions of the vertical and horizontal polarizations by the microscope. These two
effects change the orientations of the quarter-wave plate and the polarizer at the dark fringe, and
the settings of the phase-sensitive and amplitude-sensitive working points. These experimental
imperfections, however, can be included into the model of section 3. By measuring them, we
can determine and compensate for their influence on the response of the interferometer. The
quality of an interferometer can be characterized by its contrast ratio I max/Imin. It can be shown
that the previous effects, if properly compensated for, do not reduce the contrast. The contrast
ratio is in fact limited by other imperfections of the optical elements, such as depolarization by
the microscope objectives.

To generate our probe beam, we start with the signal beam of an OPO (APE, Berlin) synchro-
nously pumped by a Ti:Sapphire laser (Coherent Mira 900D) at a repetition rate of 76 MHz. The
signal beam is frequency-doubled in the OPO cavity. The resulting pulses are nearly Fourier-
limited and are tunable in wavelength between 520 and 650 nm. The Ti:Sapphire laser is op-
erated at 800 nm, and pumped by a CW frequency-doubled Nd:YAG laser (Coherent Verdi
V10, 10 W, 532 nm). The laser system can be aligned to produce pulse lengths either in the
picosecond or in the femtosecond range. The pulse lengths (full width at half maximum of
the autocorrelation function) of the Ti:Sapphire laser and the OPO are approximately 3 ps and
1.5 ps in the picosecond configuration and 120 fs and 250 fs in the femtosecond configuration.
Unless otherwise indicated, the measurements in this article were carried out in the femtosec-
ond configuration.

A small part of the Ti:Sapphire laser beam, split off before entering the OPO, serves as the
pump in the experiment. The pump beam travels over a variable delay stage to tune its time of
arrival with respect to that of the probe-reference pair (see Fig. 1). The pump beam is combined
with the probe beam by a dichroic beam splitter before the first crystal. The pump polarization
is kept parallel to one of the optical axes of the crystal, to ensure that this pulse is not split.
After the objectives, the residual pump light is filtered out by optical bandpass filters.

The home-built microscope consists of two objectives, an oil-immersion objective (NA 1.4)
for excitation and an air-spaced objective (NA 0.95) for collection. The sample is mounted on
a piezo-electric stage and can be scanned with 25-nm precision. Commercial gold nanoparti-
cles (purchased from British Biocell International and Sigma-Aldrich and used without further
treatment) were dispersed in a 10 mg/ml aqueous solution of polyvinyl alcohol and the resulting
suspension was spin-coated onto a clean glass microscope cover slide.

Our detector is an analog Silicon APD (Hamamatsu C5331-11), which is sensitive for signals
modulated at frequencies between 4 kHz and 100 MHz. The smallest optical signal that can be
detected against electronic noise, called the noise-equivalent power (NEP), is specified between
0.5 and 1 pW/

√
Hz. The detector signal is fed into a lock-in amplifier (Stanford SR844), whose

internal clock drives an acousto-optical modulator (AOM) in the pump path at 400 kHz. To
prevent overload of the lock-in from the 76 MHz signal of the laser pulses, the signal from the
detector is pre-filtered with a passive 12 MHz low-pass filter.

Note that although we only describe a transmission configuration for the interferometer in
this paper, it is in principle also possible to apply our method to reflection measurements. In that
case, only one calcite crystal is necessary, but a quarter-wave plate has to be introduced between
the crystal and the microscope to ensure that the pulses are recombined when travelling through
the crystal in the backward direction.

3. Model of the interferometer

We model our interferometer by representing each element by a Jones matrix. In this way, we
obtain analytical expressions for the intensity at the detector and for the measured signal, as
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functions of the angles of the quarter-wave plate φ and of the polarizer θ (see Fig. 1). We
calculate the contribution to our signal of real and imaginary changes in the electric field of the
probe for each θ and φ and calculate for which combination of angles we can measure the real
and imaginary changes separately.

From Fig. 1, we write all elements of the interferometer as Jones matrices. Matrix multiplica-
tion of the elements with the incoming probe field will yield the electric field and subsequently
the intensity at the detector.

The input wave is polarized at −45 degrees, Ein =
√

1/2(1,−1), and is split into a hori-
zontally polarized reference wave, which travels in front, and a vertically polarized probe. The
absorption of the pump pulse by the particle triggers a small time-varying modification ζ (t) in
the fields transmitted though the microscope. The modification ζ is complex-valued, allowing
for changes in amplitude and phase of the fields. The temporal zero is the arrival of the pump
pulse at the sample. Reference and probe pulses are orthogonally polarized on each other and
delayed by 10 ps. After recombination, the Jones matrix associated with the particle can be
written as

P =
(

1+ ζH(t −10ps) 0
0 1+ ζ ′

V (t)

)
. (1)

Shape and orientation of the particle are a priori unknown, and a difference in particle response
in the horizontal and vertical direction has to be taken into account, and is here indicated with
the indices H and V . Also, the field of the reference pulse might alter the state of the particle,
which changes the particle response to the probe pulse from ζ (t) to ζ ′(t). Including these two
effects would however lead to more parameters than are solvable, so we assume for now that the
particle is symmetric for the horizontal and vertical direction (so either spherical, or spheroid
with the two equal axes in the x-y plane), and that we are in a linear-response regime, where
the state of the particle is not affected by the field of the reference pulse. We can now write,
instead of Eq. (1),

P =
(

1+ ζ (t−10 ps) 0
0 1+ ζ (t)

)
≈

(
1 0
0 1+ Δζ (t)

)
, (2)

where Δζ (t) = ζ (t)− ζ (t − 10 ps) is the 10-ps difference in the pump-induced modification
of the field. The approximation is exact for t < 10 ps as then ζ (t −10 ps) = 0, and introduces
only small errors for working points of the interferometer close to the dark fringe for all other
delays t.

As was already mentioned in section 2, it is important to consider a difference in optical path
length through both crystals and a difference in transmission of probe and reference through
the microscope. The former effect manifests itself as an additional wave plate in the optical
path, while the latter can be modelled with a relative decrease in amplitude of one of the two
arms. In the model, we can combine both effects in one matrix D, which adds two additional
parameters, ρ for the difference in transmission between the two polarizations (dichroism), and
τ for the optical-path difference:

D(ρ ,τ) =
1

1+(1−ρ)2

(
1 0
0 (1−ρ) eiτ

)
. (3)

The prefactor is introduced for normalization of the bright fringe intensity. ρ and τ can be
determined experimentally, since a change in either of them causes the dark fringe of the inter-
ferometer to deviate from its original position (θ ,φ) = (45 ◦,45◦). Therefore, by measuring the
actual position of the dark fringe, the two calibration parameters ρ and τ can be calculated.

The Jones matrices of a quarter-wave plate Q and of a polarizer L oriented at an arbitrary
angle are found by multiplying the Jones matrices for the elements at 0 degree [24] by rotation

#76435 - $15.00 USD Received 25 October 2006; revised 21 December 2006; accepted 26 December 2006

(C) 2007 OSA 5 March 2007 / Vol. 15,  No. 5 / OPTICS EXPRESS  2279



matrices:

Q(φ) =
1√
2

(
1+ icos(2φ) isin(2φ)

isin(2φ) 1− icos(2φ)

)
, (4)

L(θ ) =
1
2

(
1+ cos(2θ ) sin(2θ )

sin(2θ ) 1− cos(2θ )

)
. (5)

The combined action of the elements in Eqs. (2) to (5) on the incoming wave E in now gives the
electric field and the intensity of the probe beam at the detector:

Edet(θ ,φ ,ρ ,τ,Δζ ) = L(θ ) ·Q(φ) ·D(ρ ,τ) ·P(Δζ ) ·Ein , (6)

Idet(θ ,φ ,ρ ,τ,Δζ ) = |Edet(θ ,φ ,ρ ,τ,Δζ )|2 . (7)

A contour plot of the detected intensity Idet as a function of θ and φ with ρ = 0, τ = 0 and
Δζ = 0 is given in Fig. 2. The intensity has a minimum (dark fringe) for (θ ,φ) = (45 ◦,45◦),
increases outwards in an elliptical shape, and at (θ ,φ) = (45◦,135◦) we find a bright fringe.

Essentially, with a lock-in amplifier, we subtract the detected intensity of the probe beam
when the pump is off from the detected intensity when the pump is on, which gives a signal of

S(θ ,φ ,ρ ,τ,Δζ ) = Idet(θ ,φ ,ρ ,τ,Δζ )− Idet(θ ,φ ,ρ ,τ,0) . (8)

In general, for a given value of θ and φ , there will be both a contribution from the real and
imaginary part of Δζ to the signal in Eq. (8), corresponding to amplitude and phase changes
of the field, respectively. They cannot be detected separately, except for configurations where
either the amplitude contribution or the phase contribution is zero. For these working points, the
detected signal will consist of either the pure phase contribution, or the pure amplitude contri-
bution. In the following we call amplitude working point a configuration of the interferometer
which is not sensitive to a phase change in the field. All these amplitude working points form a
line which we will call amplitude line. It is the zero contour of the response to a phase change,
i.e. imaginary Δζ in Eq. (8). In the same way, a phase working point is a configuration of the
interferometer which is not sensitive to an amplitude change of the field. The amplitude and
phase lines are shown in Fig. 2.

Our model is fully analytical, and is in principle exact for a weak enough probe pulse. It
gives the measured signal in terms of θ , φ , ρ , τ , and Δζ , but this expression is too lengthy for a
qualitative discussion. Instead, we will give a first-order expansion in θ and φ around the dark
fringe, which provides an illustrative explanation of the working of the interferometer and of
the separation of phase and amplitude.

From Fig. 2(A) we see that the interferometer is in the dark fringe if the quarter-wave plate’s
fast axis and the polarizer’s transmission axis are both oriented at +45 degrees. For a first
order approximation, we only consider small deviations from the dark fringe: θ̂ = θ − π

4 and
φ̂ = φ − π

4 . Using the small-angle approximation, neglecting all higher-order terms of θ̂ and φ̂ ,
and disregarding the experimental correction parameters ρ and τ , we find the total intensity at
the detector

Idet = |Edet|2 =
(

θ̂ − φ̂ − Im(Δζ )
2

)2

+
(

φ̂ +
Re(Δζ )

2

)2

, (9)

while the intensity at the detector without the pump (Δζ = 0) is

I0 = (θ̂ − φ̂)2 + φ̂2 . (10)

We thus find our signal, which is the first-order change in intensity

S = Idet − I0 = φ̂ Re(Δζ )− (θ̂ − φ̂) Im(Δζ ) . (11)
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Fig. 2. (A) Contour plot of the intensity at the detector as a function of the angle of the
quarter-wave plate and the polarizer, showing bright and dark fringes. On the thick lines,
the interferometer is sensitive to either amplitude changes only (solid) or phase changes
only (dashed). (B) Magnification around a dark fringe, additionally showing two working
points of the interferometer where to detect pure amplitude or phase signals.

From Eq. (11) it is easy to see that amplitude and phase responses can be separated by choosing
proper angles for the polarizer and the quarter-wave plate. If θ̂ and φ̂ are equal and nonzero, the
interferometer is sensitive for amplitude changes only, while if φ̂ = 0 and θ̂ �= 0, the interfer-
ometer only measures phase changes. Fig. 2(B) shows that this first-order approximation still
applies for the amplitude line even for large angles, while the phase line is described by φ̂ = 0
only very close to the dark fringe.

4. Results and discussion

4.1. Characterization of the interferometer

The contrast ratio of the interferometer (Imax/Imin), found by rotating the polarizer by 360 de-
grees as shown in Fig. 3(A), reaches 150 in the case shown here and varies typically between
100 and 200. This corresponds to a fringe visibility (defined as (I max − Imin)/(Imax + Imin)) be-
tween 98% and 99%. The contrast is mainly limited by depolarization by the microscope objec-
tives and by the quality of the crystal surfaces. Nevertheless, due to the simplified alignment of
the crystals, the fringe visibility is high compared with other implementations of interferomet-
ric microscopes (90% ref. [23], 66% ref. [18]). As expected, the model describes the position
of the equal-intensity contours, as shown in Fig. 3(B) for the 10% contour line.

The detection path was calibrated by a laser beam square-modulated at the lock-in reference
frequency. In the following we give, if not otherwise mentioned, the root-mean-squared (rms)
values of the pump-induced square modulation to our probe beam. To be independent of the
absolute probe power, we normalize the detected intensity modulation ΔI to the intensity of
the bright fringe Ibright . For a constant relative change in the probe field Δζ , the measured and
calculated intensity changes ΔI depend on the working point as plotted in Fig. 3(C) and (D). In
order to calibrate Δζ , we notice that at half-fringe on the amplitude line the reference is fully
blocked, and Δζ = ΔI/Ibright .

Fig. 3(C) and (D) compare the detected intensity modulation as a function of the interfer-
ometer fringe level for working points on the amplitude (Fig. 3(C)) and phase line (Fig. 3(D)).
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Fig. 3. (A) The contrast ratio of the interferometer amounts to 150 as measured by scanning
the polarizer angle (dots). The model (line) assumes infinite contrast, i.e. an absolute zero
at the dark fringe. (B) The position of the 10%-fringe (dots) is well described by our model
(intensity contour lines in steps of 0.1). (C, D) Signal from a single 60-nm gold nanoparti-
cle, measured along the amplitude working line (C) and along the phase working line (D).
The lines are the signals as calculated by the model assuming Δζ = (−9.3 +10.2 i)10−5 .
The insets depict the corresponding positions of the polarizer (θ ) and the quarter-wave
plate (φ ) relative to the dark fringe (df). The measurement in panel (B) was carried out in
the picosecond configuration.
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Fig. 4. Noise amplitude as a function of the optical power at the detector. The solid line
is a fit to Eq. (13), with σampl = 0.6 pW/

√
Hz, nlaser = 0, and F = 3 ≈ 1.72. The dashed

line describes the expected photon noise scaling as the square-root of the probe power. The
difference is due to the excess noise of the avalanche process in the analog detector. This
experiment was carried out in the picosecond configuration.

The probe modulation was caused by a single 60-nm gold particle in the focus under constant
pump. The data is well described by our model with a pump-induced field modification of
Δζ = (−9.3+ 10.2 i)10−5 as the only free parameter.

Note that the exact definition of Δζ used in this article differs from that used in our previous
publication [5]: we now give rms instead of peak-peak values to facilitate comparison with
noise levels and the change in the probe field is given relative to the field at the sample and
not to the field at the detector. Both corrections reduce the absolute value of Δζ by a factor of
2
√

2 Ibright/Iwp. The ratio Iwp/Ibright used in Ref. [5] was given in the supplementary material.
In the linear-response regime it is possible to calculate the pump-induced change of the probe
field ζ (t) from Δζ (t) (Eq. 2). However, this assumption is too crude for our experimental
conditions, and the full nonlinear response must be calculated for a quantitative agreement
between predicted and measured ζ (t) traces. This calculation is however beyond the scope of
this paper.

4.2. Noise

In an optical experiment, we have to consider two independent sources of noise, electronic noise
and optical shot noise, which add quadratically. Optical noise itself has two causes. On the one
hand, laser noise σlaser stems from classical fluctuations in the output power of the laser, and
usually grows linearly with laser power. The photon noise σ ph, on the other hand, originates
from quantum-mechanical uncertainty in the amplitude of the electric field of the laser wave
and grows as the square root of laser power. Unless squeezed light is used, photon noise is the
fundamental noise limit. Photon noise is given by [25]

σph =
√

2 B P hν , (12)

where B is the detection bandwidth and P is the detected optical power.
The electronic noise also has two dominant sources. One is the thermal noise of the am-

plification stage of the detector (σampl, dark noise), which is specified by the noise equivalent
power (NEP), and is independent of laser power. Another source of electronic noise, the excess
noise, is specific for the analog avalanche photodiodes used here [26]. It arises from statistical
fluctuations in the avalanche process following the absorption of every photon. Because it is
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related to the detection of photons, excess noise has the same statistical properties as photon
noise and also increases as the square root of laser power. The excess noise factor F is defined
as σ2

shot = Fσ 2
ph, where σshot is the full shot noise. The total noise amplitude σtot then amounts

to

σtot =
√

σampl
2 + σshot

2 + σlaser
2 =

√
σampl

2 +F 2 B Phν +(nlaserP)2 . (13)

The noise is measured as the standard deviation of a series of calibrated root-mean-square
values given by the lock-in amplifier. This is equivalent to the standard deviation of a series of
absolute power measurements in the given bandwidth B. Fig. 4 shows the measured noise as a
function of the probe power at the detector (note that, as long as the pump laser is sufficiently
rejected from the detector with dichroic filters, there is no pump-power dependence of the
noise level). At low power, the electronic noise dominates and we find a constant contribution
of 0.6 pW/

√
Hz, within the specification of the NEP of the detector (section 2). At higher

power, the optical noise becomes dominant and in this regime, the noise scales as the square-
root of the laser power. The power range in Fig. 4 was limited by saturation of the detector.
Within this range, there is no contribution that scales linearly with laser power, which means
that laser noise does not contribute to the total noise. For detected powers levels between 1 and
10 μW, the main noise component is shot noise. The expected photon noise as a function of
laser power is indicated with a dashed line in Fig. 4. The difference arises from the excess noise
generated by the avalanche photodiode and is described by an excess noise factor F = 3≈ 1.7 2,
in good agreement with the manufacturer’s specification. Replacing the avalanche diode by a
PIN diode will remove this excess-noise contribution, if a sufficiently low-noise amplifier is
used. The analysis of noise sources in our experiment shows that the interferometer is not
absolutely required to reduce noise from fluctuations of the light sources (laser noise), as our
laser and OPO systems are very stable. A much simpler experimental setup in a pump-probe
configuration would therefore suffice to provide information on transient absorption only (i.e.,
on the amplitude signal).

4.3. Gold nanoparticles

As an illustration of some of the possibilities of our method, we show experiments on sin-
gle gold nanoparticles. More exhaustive results have been published elsewhere [5]. In metal
nanoparticles, optical contrast is mainly provided by the surface plasmon-polariton, or Mie res-
onance [27]. The Mie resonance is a collective oscillation of the free electrons in the particle,
and manifests itself as a relatively broad nearly-Lorentzian peak in the absorption spectrum.
The position and width of the peak depend on the size and shape of the particle, and on its envi-
ronment [27]. If a particle is excited by a short near-infrared laser pulse, first only free electrons
are excited. By electron-electron scattering, a thermalized electron gas is quickly formed, which
leads to a short but strong increase in the electron pressure [28] and a broadening of the plasmon
resonance [29]. The electrons subsequently cool by electron-phonon coupling on a timescale
of about 1 ps, hereby heating the lattice. Note that this cooling time depends on the intensity of
the excitation [30]. This sudden heating of the lattice, together with the short peak of electronic
Fermi pressure immediately after absorption of the light pulse, launches an acoustic vibration in
the lattice [28], which manifests itself optically as a periodic red shift of the plasmon resonance
[30, 31]. The period of this radial breathing mode is given in Lamb’s theory [32] as a function
of the particle size and of the longitudinal and transverse sound velocities of the metal [33].
The period is on the order of 20 picoseconds for free gold spheres of about 60 nm diameter. On
a longer timescale (100-1000 ps), the lattice cools through heat conduction to the environment.

In Fig. 5(A), a confocal scan of a sample containing 10-nm gold nanoparticles is shown. Each
diffraction-limited spot is caused by a single nanoparticle [5]. The background consists only of
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Fig. 5. (A) Confocal scan of a 10 μm× 10 μm area of a sample containing 10-nm gold
nanoparticles. Each diffraction limited spot is caused by a single nanoparticle. The back-
ground contains only the noise discussed in section 4.2. Probe wavelength and pump-probe
delay were optimized for maximum contrast (532 nm, 0 ps, respectively). This experiment
was carried out in the picosecond configuration. The sampling time was 200 ms per pixel.
(B) Example of a delay scan of a single 60-nm gold nanoparticle showing a short spike due
to the hot electron gas and periodic oscillations of the particle size. The inset compare the
’femtosecond’ (solid) and the ’picosecond’ (dashed) configuration of the laser system in
their resolving power of the fast electronic process. The traces in the inset are normalized
to the first peak. The detection bandwidth was 7.8 Hz.

the noise discussed in section 4.2. The delay between the pump and the probe-reference pair
was tuned such that the pump and the probe arrive at the sample simultaneously. In this way,
we measure the prompt response of the nanoparticle to the excitation, which gives the highest
contrast on the real part of the signal (absorptive response). The wavelength of the probe was
tuned to the plasmon resonance of the particles at 532 nm, again to ensure maximum contrast.
With a sampling time of 200 ms per pixel, the particles are detected with a signal-to-noise ratio
of roughly 7. Pump and probe power are limited by the maximum permissible absorption in
the particle, which results in a detection limit of 10-nm diameter for gold nanoparticles, for
reasonable sampling times shorter than one second per pixel.

We measure the time-dependent response of the nanoparticle to excitation with the pump
pulse by varying the delay between the pump pulse and the probe-reference pair of pulses.
Fig. 5(B) shows an example of the response of a single 60-nm gold nanoparticle in the laser
focus, detected with a bandwidth of 7.8 Hz. The first part of the trace, which is enlarged in the
inset, shows two sharp peaks, that occur when the pump is overlapped with the probe and with
the reference respectively. These peaks stem from the change in optical response due to the hot
electron gas. From the rise and decay times of the peaks, the electron-electron scattering and
electron-phonon coupling times can be obtained [30, 34]. Since these processes take place on
timescales faster than a picosecond, the width of the peaks is dominated by the pulse length if
the measurement is carried out with picosecond pulses, and information on the electronic decay
times of the particle is lost. However, by using shorter pulses, it is possible to resolve these
processes. This is demonstrated in the inset of Fig. 5(B), where the fast electronic response
is measured with femtosecond and picosecond pulses on two different single particles. In the
femtosecond experiment, the peaks are narrow enough to resolve the electronic processes in the
particle. On a longer timescale, the signal shows a damped harmonic oscillation. This is a direct
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observation of the acoustic vibrations of the particle, from which we can derive information on
the elastic properties of the particle itself and its mechanical coupling to the surroundings.

In Fig. 6, we combine the amplitude and phase separation with time-resolved experiments,
in order to measure the complete complex temporal response of the particle. As mentioned in
section 3, for delay times larger than 10 ps, it is important to choose a working point close to
the dark fringe, to ensure the full separation of amplitude and phase. The interferometer was
tuned to a 2% fringe, to comply with the approximation of Eq. (2). In Fig. 6(A), the real and
imaginary temporal responses of a single particle are shown together. Here, the different spec-
tral origin (resonance broadening versus red shift) of the peaks and of the oscillations becomes
apparent, since the two peaks have the same sign in both the amplitude and the phase configu-
ration, while the vibrations are exactly out of phase. Figure 6(B) shows the real and imaginary
temporal response of another particle in the same sample. While the amplitude response of
this particle is nearly the same as that of the particle in Fig 6(A), the phase response is rather
different. The electronic contribution gives a mainly dispersive response, while the acoustic
vibrations are completely absorptive. The differences between the two particles can be visu-
alized in a different manner in Fig. 6(C), where the dispersive response is plotted against the
absorptive response for both particles. The trace of the particle from Fig. 6(A) (gray) shows a
weaker electronic response, while the overall trace is tilted towards the real axis. These kind of
differences between particles can arise from differences in their spectral responses, themselves
due to differences in their size, shape or local environment. Further study is needed to precisely
correlate the optical and structural properties of the particles, but there is little doubt that single-
particle studies of gold nanoparticles will lead to a better understanding of their properties, and
to such applications as elasticity and damping sensors at nanometer scales.

5. Conclusion

We have developed a common-path interferometer, which enables time-resolved experiments
on single nanoparticles, and with which the absorptive and dispersive responses of the particles
can be separated. The design of the interferometer, using birefringent crystals as splitting ele-
ments, simplifies the alignment and increases the fringe contrast. A noise analysis showed that
the detection is shot-noise limited, just a factor of about 1.7 above the ultimate limit of photon
noise. We expect to reach the photon-noise limit by replacing the avalanche diode with a good
PIN diode. The interferometer is fully described by an analytical model, which allows us to find
optimal working points. We have successfully used our method for time-resolved experiments
on single gold nanoparticles. While also direct absorption measurements on single particles
yield the ultrafast response of the hot electron gas [8], only an interferometric experiment pro-
vides the full complex response of a nanoparticle on the sub-picosecond timescale, free from
any model or assumption.
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Fig. 6. (A,B) Delay scans of two gold nanoparticles with a nominal diameter of 60 nm,
measured at the amplitude (solid) and phase (dotted) sensitive working point. For particle
(A), the peaks have the same sign, but the sign of the vibrations is opposite demonstrating
the different spectral origin. For the particle in panel (B), the dispersive contribution to
the peaks is much stronger, while the vibrations completely vanish in this phase-sensitive
configuration. (C) Plotting Im(Δζ ) against Re(Δζ ) reveals the full response of both parti-
cles in the complex plane. The arrows indicate the time evolution. In all plots, the detected
intensity was 2% of the bright-fringe intensity. The traces show the average of five measure-
ments, each with a detection bandwidth of 7.8 Hz.
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