36 research outputs found

    \u3ci\u3eIn-situ\u3c/i\u3e-Investigation of Enzyme Immobilization on Polymer Brushes

    Get PDF
    Herein, we report on the use of a combined setup of quartz-crystal microbalance, with dissipation monitoring and spectroscopic ellipsometry, to comprehensively investigate the covalent immobilization of an enzyme to a polymer layer. All steps of the covalent reaction of the model enzyme glucose oxidase with the poly(acrylic acid) brush by carbodiimide chemistry, were monitored in-situ. Data were analyzed using optical and viscoelastic modeling. A nearly complete collapse of the polymer chains was found upon activation of the carboxylic acid groups with N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide and N-Hydroxysuccinimide. The reaction with the amine groups of the enzyme occurs simultaneously with re-hydration of the polymer layer. Significantly more enzyme was immobilized on the surface compared to physical adsorption at similar conditions, at the same pH. It was found that the pH responsive swelling behavior was almost not affected by the presence of the enzyme

    Elimination of Domain Boundaries Accelerates Diffusion in MOFs by an Order of Magnitude: Monolithic Metal‐Organic Framework Thin Films Epitaxially Grown on Si(111) Substrates

    Get PDF
    Many properties of the emerging class of metal-organic frameworks (MOFs) depend crucially on defect concentrations, as in case of other solids. In order to provide reference systems with nearly perfect structure and low defect density, a procedure to grow MOFs epitaxially on cm-sized Si(111) single crystals is developed. The crystalline metal-organic thin films are in high registry with the substrate\u27s crystal lattice, as demonstrated by synchrotron-based grazing incidence X-ray diffraction (GI-XRD) experiments. The corresponding reduction of MOF defect density is shown to have striking effects on the properties of these porous frameworks. The most pronounced difference concerns mass transport. An increase in the diffusion coefficient of guest molecules by one order of magnitude relative to the same MOF materials with normal defect densities is observed

    Inverse Vulcanization of Styrylethyltrimethoxysilane–Coated Surfaces, Particles, and Crosslinked Materials

    Get PDF
    Sulfur as a side product of natural gas and oil refining is an underused resource. Converting landfilled sulfur waste into materials merges the ecological imperative of resource efficiency with economic considerations. A strategy to convert sulfur into polymeric materials is the inverse vulcanization reaction of sulfur with alkenes. However, the materials formed are of limited applicability, because they need to be cured at high temperatures (>130 °C) for many hours. Herein, we report the reaction of elemental sulfur with styrylethyltrimethoxysilane. Marrying the inverse vulcanization and silane chemistry yielded high sulfur content polysilanes, which could be cured via room temperature polycondensation to obtain coated surfaces, particles, and crosslinked materials. The polycondensation was triggered by hydrolysis of poly(sulfur‐r‐styrylethyltrimethoxysilane) (poly(Sn_{n}‐r‐StyTMS) under mild conditions (HCl, pH 4). For the first time, an inverse vulcanization polymer could be conveniently coated and mildly cured via post‐polycondensation. Silica microparticles coated with the high sulfur content polymer could improve their Hg2+^{2+} ion remediation capability

    Combined QCM-D/GE as a tool to characterize stimuli-responsive swelling of and protein adsorption on polymer brushes grafted onto 3D-nanostructures

    Get PDF
    A combined setup of quartz crystal microbalance and generalized ellipsometry can be used to comprehensively investigate complex functional coatings comprising stimuli-responsive polymer brushes and 3D nanostructures in a dynamic, noninvasive in situ measurement. While the quartz crystal microbalance detects the overall change in areal mass, for instance, during a swelling or adsorption process, the generalized ellipsometry data can be evaluated in terms of a layered model to distinguish between processes occurring within the intercolumnar space or on top of the anisotropic nanocolumns. Silicon films with anisotropic nanocolumnar morphology were prepared by the glancing angle deposition technique and further functionalized by grafting of poly-(acrylic acid) or poly-(N-isopropylacrylamide) chains. Investigations of the thermoresponsive swelling of the poly-(N-isopropylacrylamide) brush on the Si nanocolumns proved the successful preparation of a stimuli-responsive coating. Furthermore, the potential of these novel coatings in the field of biotechnology was explored by investigation of the adsorption of the model protein bovine serum albumin. Adsorption, retention, and desorption triggered by a change in the pH value is observed using poly-(acrylic acid) functionalized nanostructures, although generalized ellipsometry data revealed that this process occurs only on top of the nanostructures. Poly-(N-isopropylacrylamide) is found to render the nanostructures non-fouling properties. Includes supplemental materials

    Combined QCM-D/GE as a tool to characterize stimuli-responsive swelling of and protein adsorption on polymer brushes grafted onto 3D-nanostructures

    Get PDF
    A combined setup of quartz crystal microbalance and generalized ellipsometry can be used to comprehensively investigate complex functional coatings comprising stimuli-responsive polymer brushes and 3D nanostructures in a dynamic, noninvasive in situ measurement. While the quartz crystal microbalance detects the overall change in areal mass, for instance, during a swelling or adsorption process, the generalized ellipsometry data can be evaluated in terms of a layered model to distinguish between processes occurring within the intercolumnar space or on top of the anisotropic nanocolumns. Silicon films with anisotropic nanocolumnar morphology were prepared by the glancing angle deposition technique and further functionalized by grafting of poly-(acrylic acid) or poly-(N-isopropylacrylamide) chains. Investigations of the thermoresponsive swelling of the poly-(N-isopropylacrylamide) brush on the Si nanocolumns proved the successful preparation of a stimuli-responsive coating. Furthermore, the potential of these novel coatings in the field of biotechnology was explored by investigation of the adsorption of the model protein bovine serum albumin. Adsorption, retention, and desorption triggered by a change in the pH value is observed using poly-(acrylic acid) functionalized nanostructures, although generalized ellipsometry data revealed that this process occurs only on top of the nanostructures. Poly-(N-isopropylacrylamide) is found to render the nanostructures non-fouling properties. Includes supplemental materials

    In-situ-Investigation of Enzyme Immobilization on Polymer Brushes

    Get PDF
    Herein, we report on the use of a combined setup of quartz-crystal microbalance, with dissipation monitoring and spectroscopic ellipsometry, to comprehensively investigate the covalent immobilization of an enzyme to a polymer layer. All steps of the covalent reaction of the model enzyme glucose oxidase with the poly(acrylic acid) brush by carbodiimide chemistry, were monitored in-situ. Data were analyzed using optical and viscoelastic modeling. A nearly complete collapse of the polymer chains was found upon activation of the carboxylic acid groups with N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide and N-Hydroxysuccinimide. The reaction with the amine groups of the enzyme occurs simultaneously with re-hydration of the polymer layer. Significantly more enzyme was immobilized on the surface compared to physical adsorption at similar conditions, at the same pH. It was found that the pH responsive swelling behavior was almost not affected by the presence of the enzyme. © 2019 Koenig, König, Eichhorn, Müller, Stamm and Uhlmann
    corecore