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Herein, we report on the use of a combined setup of quartz-crystal microbalance,

with dissipation monitoring and spectroscopic ellipsometry, to comprehensively

investigate the covalent immobilization of an enzyme to a polymer layer. All

steps of the covalent reaction of the model enzyme glucose oxidase with the

poly(acrylic acid) brush by carbodiimide chemistry, were monitored in-situ. Data

were analyzed using optical and viscoelastic modeling. A nearly complete collapse

of the polymer chains was found upon activation of the carboxylic acid groups

with N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide and N-Hydroxysuccinimide. The

reaction with the amine groups of the enzyme occurs simultaneously with re-hydration of

the polymer layer. Significantly more enzyme was immobilized on the surface compared

to physical adsorption at similar conditions, at the same pH. It was found that the pH

responsive swelling behavior was almost not affected by the presence of the enzyme.

Keywords: polymer brushes, enzymes, enzyme immobilization, responsive coatings, quartz-crystal microbalance,

ellipsometry

1. INTRODUCTION

The immobilization of enzymes on solid supports has been an active field of research for several
decades, due to its impact on industrial applications such as biocatalysts, or in sensor technologies
(Rosevear, 1984; Zoungrana et al., 1997; Tischer and Wedekind, 1999; Sheldon and van Pelt, 2013;
Zdarta et al., 2018). In these applications, the binding to macroscopic surfaces ensures efficient
usage, since separation from the product and re-use is facilitated, compared to the soluble form
of the enzyme. Additionally, immobilization often results in enhanced thermal and operational
stability. In general, there are three types of immobilization techniques: binding to a pre-formed
carrier or support, encapsulation within a carrier matrix, and cross-linking of enzymes. Binding
to a support can be done by adsorption via non-covalent or ionic bonds, or by chemical coupling.
The immobilization might change the activity of enzymes, either intrinsically, by a change in the
conformation or mobility of the enzyme, or by a modification of the accessibility of the enzyme.
These changes mostly lead to a decrease in the activity of the immobilized enzyme, whereas in
some cases also an increased activity, as compared to the free enzyme in the solution, was observed
(Rodrigues et al., 2013; Wu et al., 2014; Zhang et al., 2015).
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Although physical adsorption, for instance via ionic
interactions, is a very common method to immobilize enzymes
on supports, one prominent problem associated with physical
adsorption of enzymes on carriers is the rather poor stability of
these interactions (Hanefeld et al., 2009; Jesionowski et al., 2014;
Koenig et al., 2016). The so called “initial burst” and leaching
of the biocatalyst into the surrounding medium, causes severe
problems for industrial applications. This disadvantage can be
overcome by covalent coupling of the enzyme to the carrier
(Rosevear, 1984; Hanefeld et al., 2009). Additionally, this can
lead to increased thermal and chemical stability of the enzyme,
due to the formation of multiple bonds with the support. On the
downside, the immobilization process is more complex, since
modification steps for the support or the enzyme are necessary
and irreversible inactivation of the enzyme, by the formation of
the covalent bond, has to be averted.

Polymer brushes, as soft and flexible carriers with tailored
properties and a high number of functional groups, have
emerged as suitable candidates to act as an immobilizing layer
to equip various support materials with enzymes (Lane et al.,
2011; Yuan et al., 2011; Feng et al., 2014; Bayramoglu et al.,
2017). Stimuli-responsive biocatalytic materials can be designed
using responsive polymer brushes. These brushes are capable
of reacting to external stimuli, generally by reversible swelling-
deswelling behavior (Ito et al., 1989; Bocharova et al., 2010;
Crulhas et al., 2014; Dbner et al., 2017). In previous studies
of our group, poly (acrylic acid) brushes in particular emerged
as a versatile polymer that can efficiently bind biomolecules
and has stimuli-responsive properties at the same time (Bittrich
et al., 2010; Psarra et al., 2015, 2017; Koenig et al., 2016;
König et al., 2018).

Various methods can be applied to characterize the
enzyme immobilized on the polymer brush. For qualitative
characterization, infrared spectroscopy and x-ray photoelectron
spectroscopy are the most frequently used techniques.
Colorimetric assays are mostly applied for quantitative
detection of the immobilized enzyme, such as the assay
after Bradford (Xu et al., 2005; Costantini et al., 2013; Zhu
et al., 2014). Ellipsometry and quarz crystal microbalance
with dissipation monitoring (QCM-D) can also be used
Cullen et al. (2008); Ren et al. (2014). Almost exclusively,
characterization is done ex-situ, to characterize changes on
the surface before and after the immobilization step. Direct
characterization of the immobilization process in-situ has rarely
been reported, although a detailed understanding of the ongoing
process is crucial for the optimization of the enzyme product
(Draghici et al., 2014).

For this report, we used a combined setup of QCM-D and
Spectroscopic Ellipsometry (SE) to characterize and quantify
the covalent immobilization of Glucose Oxidase (GOx) on poly
(acrylic acid) (PAA) brushes, by carbodiimide chemistry in-
situ. Using viscoelastic and optical modeling, this setup allows
a comprehensive study of the thickness, composition, optical,
and mechanical properties of the polymer layer and the enzyme
(Bittrich et al., 2010; Rodenhausen and Schubert, 2011; Adam
et al., 2017). The combined setup ensures the direct comparability
of the two techniques.

2. EXPERIMENTAL DETAILS

2.1. Preparation of Polymer Brushes
PAA Brushes were prepared via an already optimized grafting-
to method (Iyer et al., 2003). Like substrates, silica-coated quartz
crystals with an approximately 50 nm thick SiO2 layer (QSX
303, Biolin Scientific, Sweden) were used. Samples were cleaned
with ethanol abs. (VWR, Germany) and dried with nitrogen gas.
Samples were then activated by oxygen plasma for 1min at 100W
(440-G Plasma System, Technics Plasma GmbH, Germany).
A macromolecular anchoring layer was spin-coated onto the
surface from a 0.02wt.-% solution of poly (glycidyl methacrylate)
(PGMA, Mn=17 500 gmol−1, Mw/Mn=1.12, Polymer Source,
Inc., Canada) in chloroform (Sigma-Aldrich, Germany) and
annealed in a vacuum for 20min at 100 ◦C to chemically bind the
polymer to the activated SiO2 surface. The PAA Guiselin brush
layer was grafted by the spin-coating of a 1wt.-% PAA solution
(Mn= 26 500 g/mol, Mw/Mn=1.7, Polymer Source, Inc., Canada)
in ethanol, followed by annealing in a vacuum at 80 ◦C for
30min and the extraction of the non-covalently bound polymer
in ethanol.

2.2. Combined QCM-D/SE
The combined QCM-D/SE setup consists of an E1 QCM-D
module (Biolin Scientific, Sweden), mounted onto the sample
stage of an alpha-SE spectroscopic ellipsometer (J.A. Woollam
Co., United States) with a fixed angle of incidence of 65◦. A flow
rate of 0.1mlmin−1 was used for the exchange of liquid in the
cell. Experiments were done in 0.01M sodium phosphate buffer
solution (prepared using NaH2PO4·2H2O and Na2HPO4·2H2O)
at 22 ◦C. The sample was first rinsed in pH 7.4 and in pH 6 buffer
solution, before a solution of 0.01M N-(3-Dimethylamino-
propyl)-N’-ethylcarbodiimide (EDC) and 0.025M N-Hydroxy-
succinimide (NHS) in pH6 was introduced. For reaction with
the enzyme, a solution of 1mgml−1 GOx (GOx Type II, G6125
from Asperigillus Niger) in pH 6 buffer was applied. Desorption
of a non-covalently bound enzyme was done through rinsing
steps with pH 6, pH 7.4 and again with a pH 6 buffer solution.
All chemicals were purchased from Sigma Aldrich, Germany and
used as received.

2.3. Ellipsometry Modeling
A simple multi-layer box-model was used to model the optical
properties and the thickness of the thin polymer films with and
without enzymes from the measured ellipsometric angles 1 and
tan(9). This model, which assumes sharp interfaces between all
layers as well as a homogeneous distribution of polymer segments
and adsorbed enzymes within the polymer layer, has previously
been found to sufficiently describe similar thin films (Bittrich
et al., 2012; Rauch et al., 2012).

The refractive index (n) and absorption coefficient (k) of
the blank silica coated quartz sensors were parameterized by
basis-spline (B-spline) functions (Johs and Hale, 2008). The
modification of the substrate with polymer layers in the dry
state (ambient air conditions with relative humidity ≈ 40% and
21 ◦C) was modeled with fixed refractive indices (nPGMA=1.525,
nPAA=1.522, determined by measurements of a thick polymer
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layer for λ = 631.5 nm).Modeling of in-situmeasurements of the
polymer brush layer, activation by EDC/NHS and quantification
of the covalently bound enzyme was done according to a
previously published method (Koenig et al., 2016). Briefly, a
two-parameter Cauchy dispersion model was used to determine
both the combined refractive index and thickness, before and
after the incorporation of GOx. Then the volume fractions
of the buffer molecules, the polymer and the enzyme were
determined by a two- and three-component Bruggemann-
EMA model, respectively, using fixed values of thickness as
determined from the Cauchy modeling. Here, for the polymer,
the fixed index of refraction of the dry polymers and for the
enzyme the refractive index of human serum albumin was
used with n(631.5) = 1.578 (Arwin, 1986). For the optical
properties of the ambient, the refractive index n(λ) was measured
with a digital multiple wavelength refractometer (DSR-lambda,
Schmidt+Haensch GmbH& Co.) at eight different wavelengths
from 435.8 to 706.5 nm. The amount of enzyme incorporated into
the polymer brush layer was calculated according to a modified
De-Feijter approach (De Feijter et al., 1978; Bittrich, 2010).

2.4. QCM-D Modeling
Shifts in frequency and dissipation of the odd overtones (j = 3, 5,
7, 9, 11) were modeled using a Voigt-Voinova approach for one
homogeneous viscoelastic layer with a fixed density of 1 g cm−3

(Voinova et al., 1999). Measurements were referenced to the
measurement with the smallest dissipation value. The software
QTools (Biolin Scientific, Sweden) was used for modeling.

2.5. Attenuated Total Reflection-Fourier
Transform Infrared Spectroscopy
Attenuated total reflection - Fourier transform infrared (ATR-
FTIR) spectra were recorded with an IFS55 spectrometer
(Bruker Optics GmbH, Leipzig, Germany) using the “single-
beam-sample-reference” (SBSR) method (OPTISPEC, Zürich,
Switzerland) (Fringeli, 1992). A special cell-design, appropriate
for the SBSR-method was used (Fringeli, 1992; Müller et al.,
1999). The SBSR concept implies the recording of single-channel
spectra IS,R(ν) separately on the sample (S) and the reference (R)
half of the ATR crystal. Normalizing the single-channel spectra
according to A(ν) = − log(IS(ν)/IR(ν)) results in absorbance
spectra (A(ν)) with a proper compensation of background
absorption, due to the SiOx layer, solvent, water vapor, and ice
on the detector window.

3. RESULTS AND DISCUSSION

EDC/NHS-Activation was used to covalently immobilize GOx
to PAA Guiselin brushes, via reaction of amine groups on the
surface of the enzyme to the carboxylic groups of the polymer.
Since the study of physical adsorption of GOx to PAA brushes
showed that almost no unspecific adsorption occurs at pH 6, this
pH value was chosen for the coupling reaction (Koenig et al.,
2016). The course of experiments was as follows: (I) rinsing with
sodium phosphate buffer solution (c(Na+)=0.01M) at pH 7.4,
(II) rinsing with buffer solution at pH 6, (III) rinsing with a
solution of EDC and NHS in pH6, (IV) reaction with a solution

of GOx in pH6 under stagnant conditions, interrupted by short
rinsing steps to allow a fresh enzyme solution to enter the
measurement cell, (V) rinsing with buffer solution at pH 6, (VI)
rinsing with buffer solution at pH 7.4, (VII) rinsing with buffer
solution at pH 6.

To follow the process in-situ, combined QCM-D/SE
measurements were conducted. Exemplary raw data of the
change in frequency and dissipation of three overtones and
of the ellipsometric angles at one wavelength are displayed in
Figure 1. Data are shown in reference to the minimum value at
around 40min. The dotted lines indicate the times of switching
valves or, in the case of the shorter lines in step IV, switching
the peristaltic pump on and off. For quantitative evaluation,
data was modeled by a Voigt-Voinova approach (QCM-D)
and an EMA approach, with a modified De-Feijter approach
(SE). Figure 2A displays best-match modeling results for the
change in areal mass (Ŵ), detected by the two techniques.
For comparison with QCM-D data, which displays only the
relative change in mass of molecules adsorbing and reacting
the polymer layer, the SE curve displays the combined mass
of buffer and enzyme molecules in the layer without the
polymer mass.

A loss of mass is detected in the transition from step I to
step II. Here, lowering of pH causes protonation of carboxylate
groups, accompanied by the loss of water molecules and counter
ions. Upon addition of EDC/NHS (step III), the negatively
charged carboxylic groups react first with EDC then further
with NHS to form a neutral succinimidyl-ester intermediate,
which causes further deswelling, again detected as a loss of mass.
QCM-D raw data was referenced to this step, since dissipation
values were the lowest at this point of the measurement. For
comparison, an offset to SE modeled data was applied as well—
originally a remaining areal mass of ∼7mgm−2 of buffer and
a thickness of ∼10 nm had been calculated, indicating that the
polymer layer is almost completely collapsed. The addition of
enzyme solution in step IV leads to two simultaneous reactions,
which are both accompanied by an increase in areal mass: on
the one hand, GOx molecules adsorb to, and subsequently react
with the activated polymer layer. On the other hand, hydrolysis
of the succinimidyl-ester occurs, followed by the re-charging and
penetration of solvent molecules into the polymer layer. This
step was done under overall non-flowing conditions, to increase
the contact time of the enzyme with the activated polymer
layer, allowing the coupling reaction to take place. While the
pump is still running during the initial 10min of introduction
of GOx, an overshoot of ŴSE is detected (reflected also in the
Psi and Delta values (Figure 1), followed by a slower decrease,
which is only stopped by switching the pump off. In the values
of ŴQCM and in QCM-D raw data, this trend is not detected,
while viscosity and shear modulus (see Figure 3) display a
similar overshoot behavior, with an even longer recovery time.
Intermittent rinsing with enzyme solution does not cause this
overshooting again, indicating that it is caused by the initial
rearrangement of polymer chains and the electrical double-
layer. However, the introduction of fresh enzyme solution into
the cell leads to a slightly increased adsorption rate, since the
depleted volume over the sample surface is renewed. After
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FIGURE 1 | Exemplary raw data of QCM-D for three different overtones (A)

and SE for one wavelength (B) of in-situ measurements during the covalent

immobilization of GOx in PAA brushes; (I) pH7.4, (II) pH 6, (III) EDC/NHS in

pH6, (IV) GOx in pH6, (V) pH6, (VI) pH7.4, (VII) pH6; QCM-D data are shown

in reference to the minimum value at around 40min.

approximately 5 h, the reaction was aborted, as the rate of
adsorption almost reaches zero. Rinsing with buffer solution at
pH 6 (step V), does not change the areal mass, indicating that no
loosely attached enzymes are present on the surface. To remove
physically adsorbed GOx, the sample was rinsed with buffer
solution at pH 7.4 (step VI). At first, a rapid increase in mass
was detected, caused by swelling of the PAA layer, followed by a
slower decrease, indicating the removal of some GOx molecules
or slow release of counter ions or buffer molecules from the layer.
The last rinsing step with buffer solution at pH 6 (step VII), again
caused the partial de-swelling of the polymer layer. Interestingly,
the areal mass detected by QCM-D after chemical coupling of
GOx was less, compared to the original value of the PAA brush
swollen in buffer solution at pH 6. Contrary to this, in SEmodeled
data, an overall increase of ∼11mgm−2 by the incorporation
of solvated enzyme was detected. This contradictory behavior is
also mirrored in the raw data (see Figure 1). One explanation
would be a decrease in the amount of water acoustically coupled
to the polymer layer, which cannot be detected by SE due to the
insufficient optical contrast (Bittrich et al., 2010; Rodenhausen
and Schubert, 2011; Adam et al., 2017): interaction with the

enzyme leads to a decreased interaction of the polymer layer
with the ambient, caused by partial neutralization of charges and
polar groups.

The finding in step III, that the polymer brush collapses
upon activation with EDC/NHS, is very interesting since the
conformation of the polymer layer has an impact on the location
of the immobilized enzyme: at the surface of this compact,
collapsed polymer layer, chain segments of almost the whole
polymer length are randomly exposed to the ambient solution.
This means that the enzyme does not have to diffuse through the
polymer layer in order to react with segments located closer to the
grafted end of the polymer chains, and the immobilized enzyme
will be distributed through the whole polymer brush when the
chains are swollen again. On the other hand, the amount of
enzyme that can be bound to the polymer brush is limited,
since only the chain segments on the surface of the collapsed
brush layer are accessible and not the whole volume of the
swollen brush.

Figure 2B displays the change in the amount of GOx,
modeled from SE data using the refractive index for dry
protein and a modified De-Feijter approach (De Feijter et al.,
1978; Bittrich, 2010). Upon introduction of the enzyme in
step IV, a continuous increase of GOx can be observed.
This increase is considerably slower than the increase of ŴSE,
again pointing to the fact that the overshoot detected in
ŴSE is caused by a change in buffer molecules included in
the optical box model. During rinsing with buffer of pH 6
and pH7.4 (steps V + VI), no change in ŴGOx is suggested
by the model. By changing the pH of the ambient solution
back to pH 6 (step VII) an unexpected, step-like release of
enzyme is observed. Together with the slow decrease in ŴSE,
detected upon rinsing with buffer at pH 7.4, this points to
the explanation that by increasing the pH in step VI, the
charge of the polymer and the adsorbed enzyme changes,
concomitant with re-arrangement of the non-covalent bonds
between enzyme and polymer and the slow release of buffer
molecules and counter ions from the layer, but no complete
rupture of hydrogen or other physical bonds. Upon decrease of
the pH in step VII and deswelling of the polymer chains, the
now more loosely adsorbed enzyme molecules desorbed at once.
Overall, a final amount of ∼3mgm−2 GOx was calculated to
be immobilized in the PAA brush layer. This is considerably
more than the amount found after physical adsorption of
GOx on PAA brushes at similar pH conditions (∼0.7mgm−2)
(Koenig et al., 2016). Figure 2C displays a schematic of the
proposed changes in conformation and hydration of the polymer
brush layer during the coupling process.

Both the viscosity and the shear modulus (Figure 3) display
the expected behavior during the process of covalent coupling
of GOx to PAA, at first: as the polymer layer deswells (steps I–
III), the viscoelasticity decreases as well, after a small overshoot,
since the layer becomes more rigid. Upon incorporation of
enzyme, the viscoelasticity increases again. Contrary to steps
I + II, upon increasing the pH in step VI, the viscoelasticity
decreases, although the change in areal mass suggests swelling of
the polymer layer. When the pH is lowered again in step VII, no
full recovery of the values of step V is detected, indicating that
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FIGURE 2 | (A) Comparison of the change in areal mass determined from QCM-D and SE during the covalent immobilization of GOx in PAA brushes, (B) Change in

ŴGOx during covalent coupling to PAA brushes determined from SE measurements, (C) scheme of the proposed changes in conformation and hydration of the

polymer brush layer during the coupling process; (I) pH7.4, (II) pH6, (III) EDC/NHS in pH6, (IV) GOx in pH6, (V) pH6, (VI) pH7.4, (VII) pH6; data are shown in

reference to the minimum value at around 40min.

the decrease in viscoelasticity is caused by an irreversible process.
When comparing the swollen polymer brush surface in pH 6
with and without an immobilized enzyme, an overall increase of
viscoelasticity is detected.

To confirm the chemical reactions occurring on the surface,
ATR-FTIR spectra were recorded in-situ during this process.
Figure 4 displays measurements at the end of each step of the
coupling process. In the range of 1,500–1,900 cm−1 characteristic

vibrational bands of the carbonyl group can be found. The PAA
brush layer shows two vibrational bands in this region: the peak
at 1,550 cm−1 is assigned to carboxylate groups, while the peak at
1,720 cm−1 is caused by the protonated carboxylic acid (Müller,
2002). Upon activation with EDC/NHS (step III), two additional
bands appear at 1,760 and 1,800 cm−1. These can be assigned to
the vibrations of the carbonyl groups in the succinimidyl ring
(Frey and Corn, 1996). At the same time, the intensity of the
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FIGURE 3 | QCM model data of the change in viscoelasticity during the chemical coupling of GOx to PAA; (I) pH7.4, (II) pH6, (III) EDC/NHS in pH6, (IV) GOx in pH6,

(V) pH6, (VI) pH7.4, (VII) pH6.

FIGURE 4 | In-situ ATR-FTIR spectra of covalent coupling of GOx to PAA

brushes, (II) pH 6, (III) EDC/NHS in pH6, (IV) GOx in pH6, (V) pH6; curves were

shifted along the vertical axis for better display.

carboxylate vibrational band decreases, due to the reaction of
these groups with EDC/NHS. After the coupling of GOx (step
IV), the succinimidyl vibrations vanish. A signal at 1,650 cm−1,
along with the increase of the signal at 1,550 cm−1, indicates
the presence of amide bonds and proves the immobilization of
enzyme on the surface. Rinsing with buffer at pH 6 (step V) does
not change the spectrum.

To ensure the preservation of the enzymatic activity of GOx
covalently immobilized on PAA brushes, the activity was tested
by a colorimetric assay. These results are published in a separate

FIGURE 5 | Comparison of the pH responsive behavior of PAA before and

after immobilization of GOx; the plot displays the difference between the areal

mass at pH7.4 and at pH6.

manuscript and discussed in comparison with the activity of the
free enzyme in solution and physically adsorbed to PAA, as well as
other types of polyelectrolyte brushes (Ferrand-Drake del Castillo
et al., 2019). The immobilized enzyme shows satisfying activity,
although the specific activity is about four times less than in the
solution. This is probably due to the active site being less readily
available on the immobilized enzyme than on the free enzyme.
Interestingly, the covalently bound enzyme is less inhibited than
the small amount of physically adsorbed enzyme.
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For possible future applications, the pH responsive behavior of
PAA brushes with immobilized GOx molecules is of importance.
Therefore, the difference 1Ŵ in between pH7.4 and pH6
was calculated. Figure 5 compares 1Ŵ before and after the
immobilization of enzyme, as detected by the two techniques
QCM-D and SE. A slight decrease of ∼10% of the original value,
after the immobilization of GOx, was noticed. This can be related
to some of the carboxyl groups being involved in the covalent
bond to the enzymes and not free for protonation anymore.
Comparing both characterization techniques, the degree of
switching is always slightly higher when detected by QCM-D
than by SE, since QCM-D is more sensitive to solvent molecules
acoustically coupled to the polymer layer and the diluted outer
region of the brush (Adam et al., 2017).

4. CONCLUSIONS

In summary, the immobilization of enzymes in polymer brushes
can be comprehensively investigated in-situ using the combined
setup of QCM-D together with SE. Both the conformational
state of the polymer layer and the incorporation of enzyme
molecules can be monitored directly during the reaction process.
Carbodiimide chemistry was used to covalently couple the model
enzyme GOx to PAA Guiselin brushes. The activation of the
carboxylic acid groups by esterification with EDC/NHS leads
to the almost complete collapse of the polymer chains. Upon
introduction of the enzyme solution, the brush becomes re-
hydrated which is detected as an increase of buffer molecules
in the polymer layer. Simultaneously, enzymes are incorporated
into the polymer brush via a reaction with the amine groups

on the surface of the enzyme. The final amount of immobilized
enzyme is significantly higher than the amount after physical
adsorption under similar pH conditions. Comparing the pH-
sensitive swelling behavior of the brushes with and without
immobilized enzyme, the swelling ratio is only slightly reduced
by the presence of the enzymes, which is promising for the
future application in stimuli-responsive biocatalytic devices and
biosensor systems.
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