5,044 research outputs found
Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in BiSe with high charge-carrier density
Topological insulators are ideally represented as having an insulating bulk
with topologically protected, spin-textured surface states. However, it is
increasingly becoming clear that these surface transport channels can be
accompanied by a finite conducting bulk, as well as additional topologically
trivial surface states. To investigate these parallel conduction transport
channels, we studied Shubnikov-de Haas oscillations in BiSe thin films,
in high magnetic fields up to 30 T so as to access channels with a lower
mobility. We identify a clear Zeeman-split bulk contribution to the
oscillations from a comparison between the charge-carrier densities extracted
from the magnetoresistance and the oscillations. Furthermore, our analyses
indicate the presence of a two-dimensional state and signatures of additional
states the origin of which cannot be conclusively determined. Our findings
underpin the necessity of theoretical studies on the origin of and the
interplay between these parallel conduction channels for a careful analysis of
the material's performance.Comment: Manuscript including supplemental materia
Fish to 2020: supply and demand in changing global markets
Using a state-of-the art computer model of global supply and demand for food and feed commodities, this book projects the likely changes in the fisheries sector over the next two decades. As prices for most food commodities fall, fish prices are expected to rise, reflecting demand for fish that outpaces the ability of the world to supply it. The model shows that developing countries will consume and produce a much greater share of the world's fish in the future, and trade in fisheries commodities will also increase. The authors show the causes and implications of these and other changes, and argue for specific actions and policies that can improve outcomes for the poor and for the environment.Supply balance, Trade, Aquaculture, Fishery management, Economic analysis, Environmental factors, Developing countries
Probing molecular dynamics at the nanoscale via an individual paramagnetic center
Understanding the dynamics of molecules adsorbed to surfaces or confined to
small volumes is a matter of increasing scientific and technological
importance. Here, we demonstrate a pulse protocol using individual paramagnetic
nitrogen vacancy (NV) centers in diamond to observe the time evolution of 1H
spins from organic molecules located a few nanometers from the diamond surface.
The protocol records temporal correlations among the interacting 1H spins, and
thus is sensitive to the local system dynamics via its impact on the nuclear
spin relaxation and interaction with the NV. We are able to gather information
on the nanoscale rotational and translational diffusion dynamics by carefully
analyzing the time dependence of the NMR signal. Applying this technique to
various liquid and solid samples, we find evidence that liquid samples form a
semi-solid layer of 1.5 nm thickness on the surface of diamond, where
translational diffusion is suppressed while rotational diffusion remains
present. Extensions of the present technique could be adapted to highlight the
chemical composition of molecules tethered to the diamond surface or to
investigate thermally or chemically activated dynamical processes such as
molecular folding
Anisotropic and strong negative magneto-resistance in the three-dimensional topological insulator Bi2Se3
We report on high-field angle-dependent magneto-transport measurements on
epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At
low temperature, we observe quantum oscillations that demonstrate the
simultaneous presence of bulk and surface carriers. The magneto- resistance of
Bi2Se3 is found to be highly anisotropic. In the presence of a parallel
electric and magnetic field, we observe a strong negative longitudinal
magneto-resistance that has been consid- ered as a smoking-gun for the presence
of chiral fermions in a certain class of semi-metals due to the so-called axial
anomaly. Its observation in a three-dimensional topological insulator implies
that the axial anomaly may be in fact a far more generic phenomenon than
originally thought.Comment: 6 pages, 4 figure
Collisional and thermal ionization of sodium Rydberg atoms I. Experiment for nS and nD atoms with n=8-20
Collisional and thermal ionization of sodium nS and nD Rydberg atoms with
n=8-20 has been studied. The experiments were performed using a two-step pulsed
laser excitation in an effusive atomic beam at atom density of about 2 10^{10}
cm^{-3}. Molecular and atomic ions from associative, Penning, and thermal
ionization processes were detected. It has been found that the atomic ions were
created mainly due to photoionization of Rydberg atoms by photons of blackbody
radiation at the ambient temperature of 300K. Blackbody ionization rates and
effective lifetimes of Rydberg states of interest were determined. The
molecular ions were found to be from associative ionization in Na(nL)+Na(3S)
collisions. Rate constants of associative ionization have been measured using
an original method based on relative measurements of Na_{2}^{+} and Na^{+} ion
signals.Comment: 23 pages, 10 figure
Probing phase transitions in a soft matter system using a single spin quantum sensor.
Phase transitions in soft matter systems reveal some of the interesting structural phenomena at the levels of individual entities constituting those systems. The relevant energy scales in soft matter systems are comparable to thermal energy (k(B)T similar to 10(-21) J). This permits one to observe interesting structural dynamics even at ambient conditions. However, at the nanoscale most experimental probes currently being used to study these systems have been either plagued by low sensitivity or are invasive at molecular scales. Nitrogen-vacancy (NV) centers in diamond is emerging as a robust quantum probe for precision metrology of physical quantities (e.g. magnetic field, electric field, temperature, and stress). Here, we demonstrate by using NV sensors to probe spin-fluctuations and temperature simultaneously to obtain information about controlled phase changes in a soft matter material as a function of temperature. The soft matter system chosen for the study is a standard liquid crystalline (LC) material which shows distinct phases close to room temperature. Individual NV centers at depths of a few nm are used as a probe to detect magnetic signals emanating from a few molecular layers of sample on the surface of the diamond. The organization and collective dynamics of LC molecules in nanoscopic volumes are discussed. Our study aims to extend the areas of application of quantum sensing using NV centers to probe the soft matter systems, particularly those exhibiting mesophases and interesting interfacial properties
Spectroscopic characterization of singlet-triplet doorway states of aluminum monofluoride
Aluminum monofluoride (AlF) possesses highly favorable properties for laser cooling, both via the A1Πand a3Πstates. Determining efficient pathways between the singlet and the triplet manifold of electronic states will be advantageous for future experiments at ultralow temperatures. The lowest rotational levels of the A1Π, v = 6 and b3Σ+, v = 5 states of AlF are nearly iso-energetic and interact via spin–orbit coupling. These levels thus have a strongly mixed spin-character and provide a singlet–triplet doorway. We here present a hyperfine resolved spectroscopic study of the A1Π, v = 6//b3Σ+, v = 5 perturbed system in a jet-cooled, pulsed molecular beam. From a fit to the observed energies of the hyperfine levels, the fine and hyperfine structure parameters of the coupled states and their relative energies as well as the spin–orbit interaction parameter are determined. The standard deviation of the fit is about 15 MHz. We experimentally determine the radiative lifetimes of selected hyperfine levels by time-delayed ionization, Lamb dip spectroscopy, and accurate measurements of the transition lineshapes. The measured lifetimes range between 2 and 200 ns, determined by the degree of singlet–triplet mixing for each level
Single-photon-emitting optical centers in diamond fabricated upon Sn implantation
The fabrication of luminescent defects in single-crystal diamond upon Sn
implantation and annealing is reported. The relevant spectral features of the
optical centers (emission peaks at 593.5 nm, 620.3 nm, 630.7 nm and 646.7 nm)
are attributed to Sn-related defects through the correlation of their
photoluminescence (PL) intensity with the implantation fluence. Single
Sn-related defects were identified and characterized through the acquisition of
their second-order auto-correlation emission functions, by means of
Hanbury-Brown-Twiss interferometry. The investigation of their single-photon
emission regime as a function of excitation laser power revealed that
Sn-related defects are based on three-level systems with a 6 ns radiative decay
lifetime. In a fraction of the studied centers, the observation of a blinking
PL emission is indicative of the existence of a dark state. Furthermore,
absorption dependence from the polarization of the excitation radiation with
about 45 percent contrast was measured. This work shed light on the existence
of a new optical center associated with a group-IV impurity in diamond, with
similar photo-physical properties to the already well-known Si-V and Ge-V
emitters, thus providing results of interest from both the fundamental and
applicative points of view.Comment: 10 pages, 4 figure
- …