14 research outputs found

    Effects of the seedling tray overlapping for seed emergence mode on emergence characteristics and growth of rice seedlings

    Get PDF
    Seedling mode plays a crucial role in the rice production process, as it significantly affects the growth and development of seedlings. Among the various seedling modes, the seedling tray overlapping for seed emergence mode (STOSE mode) has been demonstrated to be effective in enhancing seedling quality. However, the impact of this mode on the germination and growth of seeds with varying plumpness remains uncertain. To investigate the effect of the STOSE mode on seedling emergence characteristics, growth uniformity, and nutrient uptake of seeds with varying plumpness levels, we conducted a study using super early rice Zhongzao 39 (ZZ39) as the test material. The seeds were categorized into three groups: plumped, mixed, and unplumped. The results indicated that the STOSE mode significantly improved the seedling rate for all types of seeds in comparison to the seedling tray nonoverlapping for seed emergence mode (TSR mode). Notably, the unplumped seeds exhibited the most pronounced enhancement effect. The soluble sugar content of the seeds increased significantly after 2 days of sowing under the STOSE mode, whereas the starch content exhibited a significant decrease. Furthermore, the STOSE mode outperformed the TSR mode in several aspects including seedling growth uniformity, aboveground dry matter mass, root traits, and nutrient uptake. Overall, the STOSE mode not only promoted the germination and growth of plumped and mixed seeds but also had a more pronounced impact on unplumped seeds

    Preparation, Characterization, and Evaluation of Breviscapine Nanosuspension and Its Freeze-Dried Powder

    No full text
    As a biopharmaceutics classification system (BCS) class IV drug, breviscapine (Bre) has low solubility in water, poor chemical stability, a short biological half-life and rapid removal from plasma. This paper prepared a Bre nanosuspension (Bre-NS) by an ultrasound-assisted anti-solvent precipitation method. Characterization of Bre-NS was studied using a Box–Behnken design concerning drug concentration in DMSO, an anti-solvent-to-solvent ratio, and sonication time. Under the optimized conditions of 170 mg/mL for the drug concentration, a 1:60 solvent-to-anti-solvent ratio, and a 9 min sonication time, the particle size of Bre-NS was 303.7 ± 7.3 nm, the polydispersity index was 0.178 ± 0.015, and the zeta potential was −31.10 ± 0.26 mV. Combined with the results from differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform-infrared spectroscopy (FT-IR), the findings indicated that the crystal form and chemical structure of Bre-NS did not change during the entire process. The optimized formulation displayed good stability, increased solubility, and better in vitro release. Therefore, the results of this study can be a reference for the delivery system design of insoluble active components and effective parts in traditional Chinese medicine

    Ultrasound treatments improve germinability of soybean seeds: The key role of working frequency

    No full text
    In this paper, the effects of ultrasound with different frequency modes on the sprouting rate, sprouting vigor, metabolism-related enzyme activity and late nutrient accumulation in soybean were investigated, and the mechanism of dual-frequency ultrasound promoting bean sprout development was explored. The results showed that, compared with control, the sprouting time was shortened by 24 h after dual-frequency ultrasound treatment (20/60 kHz), and the longest shoot was 7.82 cm at 96 h. Meanwhile, ultrasonic treatment significantly enhanced the activities of protease, amylase, lipase and peroxidase (p < 0.05), particularly the phenylalanine ammonia-lyase increased by 20.50%, which not only accelerated the seed metabolism, but also led to the accumulation of phenolics (p < 0.05), as well as more potent antioxidant activity at later stages of sprouting. In addition, the seed coat exhibited remarkable cracks and holes after ultrasonication, resulting in accelerated water absorption. Moreover, the immobilized water in seeds increased significantly, which was beneficial to seed metabolism and later sprouting. These findings confirmed that dual-frequency ultrasound pretreatment has a great potential to be used for seed sprouting and promoting the accumulation of nutrients in bean sprouts by accelerating water absorption and increasing enzyme activity

    Dichloridobis{1-[(2-methylbenzimidazol-1-yl-κ N

    No full text

    Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS) – A state-of-the-art review

    Get PDF
    Carbon Capture, Utilisation and Storage (CCUS) will play a critical role in future decarbonisation efforts to meet the Paris Agreement targets and mitigate the worst effects of climate change. Whilst there are many well developed CCUS technologies there is the potential for improvement that can encourage CCUS deployment. A time and cost-efficient way of advancing CCUS is through the application of machine learning (ML). ML is a collective term for high-level statistical tools and algorithms that can be used to classify, predict, optimise, and cluster data. Within this review we address the main steps of the CCUS value chain (CO2 capture, transport, utilisation, storage) and explore how ML is playing a leading role in expanding the knowledge across all fields of CCUS. We finish with ten recommendations for further work and research that will help develop the role that ML plays in CCUS and enable greater deployment of the technologies
    corecore