209 research outputs found

    Recombinant VP1, an Akt Inhibitor, Suppresses Progression of Hepatocellular Carcinoma by Inducing Apoptosis and Modulation of CCL2 Production

    Get PDF
    BACKGROUND: The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC), one of the most common human cancers worldwide. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC₅₀ values in the range of 0.1-0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice. CONCLUSIONS/SIGNIFICANCE: The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC

    Fixel-Based Analysis Effectively Identifies White Matter Tract Degeneration in Huntington’s Disease

    Get PDF
    Microstructure damage in white matter might be linked to regional and global atrophy in Huntington’s Disease (HD). We hypothesize that degeneration of subcortical regions, including the basal ganglia, is associated with damage of white matter tracts linking these affected regions. We aim to use fixel-based analysis to identify microstructural changes in the white matter tracts. To further assess the associated gray matter damage, diffusion tensor-derived indices were measured from regions of interest located in the basal ganglia. Diffusion weighted images were acquired from 12 patients with HD and 12 healthy unrelated controls using a 3 Tesla scanner. Reductions in fixel-derived metrics occurs in major white matter tracts, noticeably in corpus callosum, internal capsule, and the corticospinal tract, which were closely co-localized with the regions of increased diffusivity in basal ganglia. These changes in diffusion can be attributed to potential axonal degeneration. Fixel-based analysis is effective in studying white matter tractography and fiber changes in HD

    CD40 Gene Polymorphisms Associated with Susceptibility and Coronary Artery Lesions of Kawasaki Disease in the Taiwanese Population

    Get PDF
    Background. Kawasaki disease (KD) is characterized by systemic vasculitis of unknown etiology. Our previous studies showed expression of CD40 ligand on CD4+ T cells correlated to the coronary artery lesion (CAL) and disease progress in KD. Other studies from Japan suggested the role of CD40L in the pathogenesis of CAL, and this might help explain the excessive number of males affected with KD but cannot be reproduced by Taiwanese population. This study was conducted to investigate the CD40 polymorphism in KD and CAL formation. Methods. A total of 950 subjects (381 KD patients and 569 controls) were investigated to identify 2 tagging single-nucleotide polymorphisms (tSNPs) of CD40 (rs4810485 and rs1535045) by using the TaqMan allelic discrimination assay. Results. A significant association was noted with regards to CD40 tSNPs (rs1535045) between controls and KD patients (P = 0.0405, dominant model). In KD patients, polymorphisms of CD40 (rs4810485) showed significant association with CAL formation (P = 0.0436, recessive model). Haplotype analysis did not yield more significant results between polymorphisms of CD40 and susceptibility/disease activity of KD. Conclusions. This study showed for the first time that polymorphisms of CD40 are associated with susceptibility to KD and CAL formation, in the Taiwanese population

    Extracts from Cladiella australis, Clavularia viridis and Klyxum simplex (Soft Corals) are Capable of Inhibiting the Growth of Human Oral Squamous Cell Carcinoma Cells

    Get PDF
    Many biomedical products have already been obtained from marine organisms. In order to search more therapeutic drugs against cancer, this study demonstrates the cytotoxicity effects of Cladiella australis, Clavularia viridis and Klyxum simplex extracts on human oral squamous cell carcinoma (SCC4, SCC9 and SCC25) cells using cell adhesion and cell viability assay. The morphological alterations in SCCs cells after treatment with three extracts, such as typical nuclear condensation, nuclear fragmentation and apoptotic bodies of cells were demonstrated by Hoechst stain. Flow cytometry indicated that three extracts sensitized SCC25 cells in the G0/G1 and S-G2/M phases with a concomitant significantly increased sub-G1 fraction, indicating cell death by apoptosis. This apoptosis process was accompanied by activation of caspase-3 expression after SCC25 cells were treated with three extracts. Thereby, it is possible that extracts of C. australis, C. viridis and K. simplex cause apoptosis of SCCs and warrant further research investigating the possible anti-oral cancer compounds in these soft corals

    Evaluation of Oral Antiretroviral Drugs in Mice With Metabolic and Neurologic Complications

    Get PDF
    Antiretroviral (ART) drugs has previously been associated with lipodystrophic syndrome, metabolic consequences, and neuropsychiatric complications. ART drugs include three main classes of protease inhibitors (PIs), nucleoside analog reverse transcriptase inhibitors (NRTIs), and non-nucleoside reverse transcriptase inhibitors (NNRTIs). Our previous work demonstrated that a high risk of hyperlipidemia was observed in HIV-1-infected patients who received ART drugs in Taiwan. Patients receiving ART drugs containing either Abacavir/Lamivudine (Aba/Lam; NRTI/NRTI), Lamivudine/Zidovudine (Lam/Zido; NRTI/NRTI), or Lopinavir/Ritonavir (Lop/Rit; PI) have the highest risk of hyperlipidemia. The aim of this study was to investigate the effects of Aba/Lam (NRTI/NRTI), Lam/Zido (NRTI/NRTI), and Lop/Rit (PI) on metabolic and neurologic functions in mice. Groups of C57BL/6 mice were administered Aba/Lam, Lam/Zido, or Lop/Rit, orally, once daily for a period of 4 weeks. The mice were then extensively tested for metabolic and neurologic parameters. In addition, the effect of Aba/Lam, Lam/Zido, and Lop/Rit on lipid metabolism was assessed in HepG2 hepatocytes and during the 3T3-L1 preadipocyte differentiation. Administration with Aba/Lam caused cognitive and motor impairments in mice, as well as their metabolic imbalances, including alterations in leptin serum levels. Administration with Lop/Rit also caused cognitive and motor impairments in mice, as well as their metabolic imbalances, including alterations in serum levels of total cholesterol, and HDL-c. Treatment of mice with Aba/Lam and Lop/Rit enhanced the lipid accumulation in the liver, and the decrease in AMP-activated protein kinase (AMPK) phosphorylation and/or its downstream target acetyl-CoA carboxylase (ACC) protein expression. In HepG2 hepatocytes, Aba/Lam, Lam/Zido, and Lop/Rit also enhanced the lipid accumulation and decreased phosphorylated AMPK and ACC proteins. In 3T3-L1 pre-adipocyte differentiation, Aba/Lam and Lop/Rit reduced adipogenesis by decreasing expression of transcription factor CEBPb, implicating the lipodystrophic syndrome. Our results demonstrate that daily oral administration of Aba/Lam and Lop/Rit may produce cognitive, motor, and metabolic impairments in mice, regardless of HIV-1 infection

    Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Neocallimastix patriciarum</it> is one of the common anaerobic fungi in the digestive tracts of ruminants that can actively digest cellulosic materials, and its cellulases have great potential for hydrolyzing cellulosic feedstocks. Due to the difficulty in culture and lack of a genome database, it is not easy to gain a global understanding of the glycosyl hydrolases (<it>GHs</it>) produced by this anaerobic fungus.</p> <p>Results</p> <p>We have developed an efficient platform that uses a combination of transcriptomic and proteomic approaches to <it>N. patriciarum </it>to accelerate gene identification, enzyme classification and application in rice straw degradation. By conducting complementary studies of transcriptome (Roche 454 GS and Illumina GA IIx) and secretome (ESI-Trap LC-MS/MS), we identified 219 putative <it>GH </it>contigs and classified them into 25 <it>GH</it> families. The secretome analysis identified four major enzymes involved in rice straw degradation: β-glucosidase, endo-1,4-β-xylanase, xylanase B and Cel48A exoglucanase. From the sequences of assembled contigs, we cloned 19 putative cellulase genes, including the <it>GH1</it>, <it>GH3</it>, <it>GH5</it>, <it>GH6</it>, <it>GH9</it>, <it>GH18</it>, <it>GH43 </it>and <it>GH48 </it>gene families, which were highly expressed in <it>N. patriciarum </it>cultures grown on different feedstocks.</p> <p>Conclusions</p> <p>These <it>GH </it>genes were expressed in Pichia pastoris and/or Saccharomyces cerevisiae for functional characterization. At least five novel cellulases displayed cellulytic activity for glucose production. One β-glucosidase (W5-16143) and one exocellulase (W5-CAT26) showed strong activities and could potentially be developed into commercial enzymes.</p

    HLJ1 is a novel caspase-3 substrate and its expression enhances UV-induced apoptosis in non-small cell lung carcinoma

    Get PDF
    Carcinogenesis is determined based on both cell proliferation and death rates. Recent studies demonstrate that heat shock proteins (HSPs) regulate apoptosis. HLJ1, a member of the DnaJ-like Hsp40 family, is a newly identified tumor suppressor protein closely related to relapse and survival in non-small cell lung cancer (NSCLC) patients. However, its role in apoptosis is currently unknown. In this study, NSCLC cell lines displaying varying HLJ1 expression levels were subjected to ultraviolet (UV) irradiation, followed by flow cytometry. Interestingly, the percentages of apoptotic cells in the seven cell lines examined were positively correlated with HLJ1 expression. Enforcing expression of HLJ1 in low-HLJ1 expressing highly invasive cells promoted UV-induced apoptosis through enhancing JNK and caspase-3 activation in NSCLC. Additionally, UV irradiation led to reduced levels of HLJ1 predominantly in apoptotic cells. The pan-caspase inhibitor, zVAD-fmk and caspase-3-specific inhibitor, DEVD-fmk, prevented UV-induced degradation of HLJ1 by the late stage of apoptosis. Further experiments revealed a non-typical caspase-3 cleavage site (MEID) at amino acid 125–128 of HLJ1. Our results collectively suggest that HLJ1 is a novel substrate of caspase-3 during the UV-induced apoptotic process
    corecore