15 research outputs found

    Development of Gelatine-based Bio-film from Chicken Feet Incorporated with Sugarcane Bagasse

    Get PDF
    Purpose Protein-based films have good barrier characteristics against gas compared to synthetic films, but they have poor mechanical properties and high water vapour permeability (WVP) due to their hydrophilic nature. Sugarcane bagasse (SCB) is available abundantly in Southeast Asian countries and can be potentially utilized for its cellulose to increase the stiffness of the film. Hence, the purpose of this study was to develop a gelatine-based film from chicken feet incorporated with SCB. Design/methodology/approach Film-forming solutions (FFS) from chicken feet gelatine with different percentages of glycerol (25 and 35 per cent) were prepared by casting 4.0 g of FFS onto a rimmed silicone resin plate (50 × 50 mm2). Cellulose from SCB was purified and used to prepare hydrolyzed SCB. Films with 35 per cent glycerol were selected to be incorporated with different weight percentages (2.5, 5.0, 7.5 and 10.0 per cent) of hydrolyzed SCB to increase the tensile strength (TS) and lower the WVP of the films. Mechanical properties, colour and transparency of the films were also tested. Findings Films containing 35 per cent glycerol have lower TS but higher elongation at break compared to films prepared with 25 per cent glycerol. There were no significant differences between the films with 25 per cent and 35 per cent glycerol in thickness, WVP and transparency value tests. Film incorporated with 5.0 Wt.% SCB had a slight increment in TS (23.07 MPa) compared to the control film (22.50 MPa). WVP was also lowered from 2.18 × 10−11gm−1s−1Pa−1 to 1.85 × 10−11gm−1s−1Pa−1. The other properties, namely, thickness, colour measurement and transparency value, were significantly different (p &lt; 0.05) but nearer to the properties of the control film. Originality/value This study incorporates hydrolyzed SCB to study the potential mechanical benefits in protein-based bio-films. There is potential to utilize agricultural waste (chicken feet and SCB) to develop food packaging films. </jats:sec

    What information and the extent of information research participants need in informed consent forms: a multi-country survey

    Get PDF
    Background: The use of lengthy, detailed, and complex informed consent forms (ICFs) is of paramount concern in biomedical research as it may not truly promote the rights and interests of research participants. The extent of information in ICFs has been the subject of debates for decades; however, no clear guidance is given. Thus, the objective of this study was to determine the perspectives of research participants about the type and extent of information they need when they are invited to participate in biomedical research. Methods: This multi-center, cross-sectional, descriptive survey was conducted at 54 study sites in seven Asia-Pacific countries. A modified Likert-scale questionnaire was used to determine the importance of each element in the ICF among research participants of a biomedical study, with an anchored rating scale from 1 (not important) to 5 (very important). Results: Of the 2484 questionnaires distributed, 2113 (85.1%) were returned. The majority of respondents considered most elements required in the ICF to be \u27moderately important\u27 to \u27very important\u27 for their decision making (mean score, ranging from 3.58 to 4.47). Major foreseeable risk, direct benefit, and common adverse effects of the intervention were considered to be of most concerned elements in the ICF (mean score = 4.47, 4.47, and 4.45, respectively). Conclusions: Research participants would like to be informed of the ICF elements required by ethical guidelines and regulations; however, the importance of each element varied, e.g., risk and benefit associated with research participants were considered to be more important than the general nature or technical details of research. Using a participant-oriented approach by providing more details of the participant-interested elements while avoiding unnecessarily lengthy details of other less important elements would enhance the quality of the ICF

    Structure-activity studies on highly active palladium hydrogenation catalysts by X-ray absorption spectroscopy

    No full text
    Functionalized carbon nanotubes were used to produce Pd-based hydrogenation catalysts. Pd/CNT with small (1–2 nm) Pd particles showed classical catalytic behavior in propyne hydrogenation, with high propene selectivity at moderate conversion levels and propane formation near full conversion. Pd/CNT with larger (15 nm) nanoparticles, however, was selective (88%) toward propene even at practically full propyne conversion. An additionally prepared Pd2Ga/CNT catalyst exhibited even higher propene selectivity at full conversion. All of these materials were studied in situ by X-ray absorption spectroscopy at the Pd K-edge. Pd2Ga/CNT was stable under all conditions examined without variation in XANES or in the derived EXAFS parameters. Both Pd/CNT samples formed β-hydride under hydrogen, as assessed from the calculated lattice expansion and the characteristic red shift of the XANES maxima. The minor spectroscopic difference between the monometallic catalysts observed at high propyne conversion suggests the decisive role of a Pd–C (subsurface C) contribution in the structure of larger Pd particles, being absent with ultrasmall nanoparticles. In general, all factors (intermetallic phase formation, subsurface C, etc.) that reduce the surface H coverage will give rise to enhanced partial hydrogenation selectivity of palladium when secondary alkene hydrogenation at late bed segments or diffusion issues in the pores are avoided

    Modern Trends in Catalyst and Process Design for Alkyne Hydrogenations

    No full text
    corecore