221 research outputs found

    Imatinib Mesylate: Past Successes and Future Challenges in the Treatment of Gastrointestinal Stromal Tumors

    Get PDF
    Just over a decade ago, gastrointestinal tumours were a poorly understood mesenchymal neoplasm unsuccessfully treated with chemotherapy. Cytotoxic therapy for advanced disease yielded response rates of 10% and median survival of just 18 months. However, the discovery of KIT and platelet derived growth factor receptor alpha (PDGFRA) mutations as oncogenic drivers of most gastrointestinal tumours, paved the way for targeted therapy. Imatinib mesylate, a tyrosine kinase inhibitor, produces a clinical benefit rate (complete response, partial response, and stable disease) of more than 80% in metastatic setting and a median survival of 57 months. Imatinib is now also approved in adult patients following resection of KIT-positive GIST. Major insights into the mechanism of action of imatinib, unique pharmacokinetics, drug resistance, and management of low grade but chronic adverse effects continue to be made

    Prediction of 60 day case-fatality after aneurysmal subarachnoid haemorrhage: results from the International Subarachnoid Aneurysm Trial (ISAT)

    Get PDF
    Aneurysmal subarachnoid haemorrhage (aSAH) is a devastating event with substantial case-fatality. Our purpose was to examine which clinical and neuro-imaging characteristics, available on admission, predict 60 day case-fatality in aSAH and to evaluate performance of our prediction model. We performed a secondary analysis of patients enrolled in the International Subarachnoid Aneurysm Trial (ISAT), a randomised multicentre trial to compare coiling with clipping in aSAH patients. Multivariable logistic regression analysis was used to develop a prognostic model to estimate the risk of dying within 60 days from aSAH based on clinical and neuro-imaging characteristics. The model was internally validated with bootstrapping techniques. The study population comprised of 2,128 patients who had been randomised to either endovascular coiling or neurosurgical clipping. In this population 153 patients (7.2%) died within 60 days. World Federation of Neurosurgical Societies (WFNS) grade was the most important predictor of case-fatality, followed by age, lumen size of the aneurysm and Fisher grade. The model discriminated reasonably between those who died within 60 days and those who survived (c statistic = 0.73), with minor optimism according to bootstrap re-sampling (optimism corrected c statistic = 0.70). Several strong predictors are available to predict 60 day case-fatality in aSAH patients who survived the early stage up till a treatment decision; after external validation these predictors could eventually be used in clinical decision making

    Pitfalls in mutational testing and reporting of common KIT and PDGFRA mutations in gastrointestinal stromal tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutation analysis of <it>KIT </it>and <it>PDGFRA </it>genes in gastrointestinal stromal tumors is gaining increasing importance for prognosis of GISTs and for prediction of treatment response. Several groups have identified specific mutational subtypes in <it>KIT </it>exon 11 associated with an increased risk of metastatic disease whereas GISTs with <it>PDGFRA </it>mutations often behave less aggressive. Furthermore, in advanced GIST disease with proven <it>KIT </it>exon 9 mutation the doubled daily dose of 800 mg imatinib increases the progression free survival and is now recommended both in the European and the American Guidelines. In Germany, there are still no general rules how to perform mutational analysis.</p> <p>Methods</p> <p>When comparing results from six different molecular laboratories we recognized the need of standardisation. Six German university laboratories with experience in mutation analysis in GISTs joined together to develop recommendations for the mutation analysis of the most common and clinically relevant hot spots, i. e. <it>KIT </it>exons 9 and 11 and <it>PDGFRA </it>exon 18. We performed a three-phased interlaboratory trial to identify pitfalls in performing molecular analysis in GISTs.</p> <p>Results</p> <p>We developed a design for a continuous external laboratory trial. In 2009 this external trial was conducted by 19 laboratories via the initiative for quality assurance in pathology (QuiP) of the German Society of Pathology and the Professional Association of German Pathologists.</p> <p>Conclusions</p> <p>By performing a three-phased internal interlaboratory trial and conducting an external trial in Germany we were able to identify potential pitfalls when performing KIT and PDGFRA mutational analysis in gastrointestinal stromal tumors. We developed standard operation procedures which are provided with the manuscript to allow other laboratories to prevent these pitfalls.</p

    Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    Get PDF
    Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download

    Automatic Filtering and Substantiation of Drug Safety Signals

    Get PDF
    Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions

    Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

    Get PDF
    Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.Comment: 49 pages, 2 figures, 2 tables, 10 supplementary figures, 13 supplementary table
    corecore