11 research outputs found

    The reliability and interobserver reproducibility of T2/FLAIR mismatch in the diagnosis of IDH-mutant astrocytomas

    Get PDF
    PURPOSE:The reliability and reproducibility of T2-weighted imaging/ fluid-attenuated inversion recovery (T2/FLAIR) mismatch were investigated in the diagnosis of isocitrate dehydrogenase (IDH) mutant astrocytoma between WHO grade II and III diffuse hemispheric gliomas.METHODS:WHO grade II and grade III diffuse hemispheric gliomas (n=133) treated in our institute were included in the study. Pathological findings and molecular markers of the cases were reviewed with the criteria of WHO 2016. The finding of mismatch between T2-weighted and FLAIR images in preoperative magnetic resonance imaging (MRI) of the cases was evaluated by two different radiologists. The readers reviewed MRIs independently, blinded to the histopathologic diagnosis or molecular subset of tumors. The cases were classified as IDH-mutant astrocytoma, oligodendroglioma and IDH-wildtype (IDH-wt) astrocytoma according to molecular and genetic features.RESULTS:T2/FLAIR mismatch positivity was observed in 46 patients (34.6%). T2/FLAIR mismatch positivity was observed in 42 of 75 IDH-mutant astrocytomas (56%) and 4 of 43 oligodendrogliomas (9.30%), while it was not seen among IDH-wt astrocytomas (0/15, 0%). The T2/FLAIR mismatch ratio was significantly different between IDH-mutant astrocytomas (WHO grade II and grade III) and oligodendrogliomas (chi-square, p <0.05). The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of T2/FLAIR mismatch in predicting IDH-mutant astrocytomas were 58.7%, 90.7%, 91.7%, 61.4%, and 70.3% respectively. Radiologist 1 diagnosed T2/FLAIR mismatch in 48 of 133 cases (36.1%) and Radiologist 2 in 66 of 133 cases (49.6%). The interrater agreement for the T2/FLAIR mismatch sign was 0.61 (p <0.05), 95% CI (0.55, 0.67).CONCLUSION:T2/FLAIR mismatch appears to be an important MRI finding in distinguishing IDH-mutant astrocytomas from other diffuse hemispheric gliomas. However, it should be kept in mind that T2/FLAIR mismatch sign can be seen in a minority of oligodendrogliomas besides IDH-mutant astrocytomas

    The Carotid Endarterectomy Cadaveric Investigation for Cranial Nerve Injuries: Anatomical Study

    No full text
    Cerebral stroke continues to be one of the leading causes of mortality and long-term morbidity; therefore, carotid endarterectomy (CEA) remains to be a popular treatment for both symptomatic and asymptomatic patients with carotid stenosis. Cranial nerve injuries remain one of the major contributor to the postoperative morbidities. Anatomical dissections were carried out on 44 sides of 22 cadaveric heads following the classical CEA procedure to investigate the variations of the local anatomy as a contributing factor to cranial nerve injuries. Concurrence of two variations was found to be important in hypoglossal nerve injury: the presence of a direct smaller vein in proximity of the carotid bifurcation, and the intersection of the hypoglossal nerve (HN) with this vein. Based on the sample investigated, this variation was observed significantly higher on the right side. Awareness of possible anatomical variations and early ligation of any small veins can significantly decrease iatrogenic injury risk

    Somatic POLE

    No full text
    BACKGROUND: Malignant high-grade gliomas (HGGs), including the most aggressive form, glioblastoma multiforme, show significant clinical and genomic heterogeneity. Despite recent advances, the overall survival of HGGs and their response to treatment remain poor. In order to gain further insight into disease pathophysiology by correlating genomic landscape with clinical behavior, thereby identifying distinct HGG molecular subgroups associated with improved prognosis, we performed a comprehensive genomic analysis. METHODS: We analyzed and compared 720 exome-sequenced gliomas (136 from Yale, 584 from The Cancer Genome Atlas) based on their genomic, histological, and clinical features. RESULTS: We identified a subgroup of HGGs (6 total, 4 adults and 2 children) that harbored a statistically significantly increased number of somatic mutations (mean = 9257.3 vs 76.2, P = .002). All of these “ultramutated” tumors harbored somatic mutations in the exonuclease domain of the polymerase epsilon gene (POLE), displaying a distinctive genetic profile, characterized by genomic stability and increased C-to-A transversions. Histologically, they all harbored multinucleated giant or bizarre cells, some with predominant infiltrating immune cells. One adult and both pediatric patients carried homozygous germline mutations in the mutS homolog 6 (MSH6) gene. In adults, POLE mutations were observed in patients younger than 40 years and were associated with a longer progression-free survival. CONCLUSIONS: We identified a genomically, histologically, and clinically distinct subgroup of HGGs that harbored somatic POLE mutations and carried an improved prognosis. Identification of distinctive molecular and pathological HGG phenotypes has implications not only for improved classification but also for potential targeted treatments

    Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis

    No full text
    Background. Malignant high-grade gliomas (HGGs), including the most aggressive form, glioblastoma multiforme, show significant clinical and genomic heterogeneity. Despite recent advances, the overall survival of HGGs and their response to treatment remain poor. In order to gain further insight into disease pathophysiology by correlating genomic landscape with clinical behavior, thereby identifying distinct HGG molecular subgroups associated with improved prognosis, we performed a comprehensive genomic analysis

    Integrated genomic characterization of IDH1-mutant glioma malignant progression

    No full text
    Gliomas represent approximately 30% of all central nervous system tumors and 80% of malignant brain tumors(1). To understand the molecular mechanisms underlying the malignant progression of low-grade gliomas with mutations in IDH1 (encoding isocitrate dehydrogenase 1), we studied paired tumor samples from 41 patients, comparing higher-grade, progressed samples to their lower-grade counterparts. Integrated genomic analyses, including whole-exome sequencing and copy number, gene expression and DNA methylation profiling, demonstrated nonlinear clonal expansion of the original tumors and identified oncogenic pathways driving progression. These include activation of the MYC and RTK-RAS-PI3K pathways and upregulation of the FOXM1- and E2F2-mediated cell cycle transitions, as well as epigenetic silencing of developmental transcription factor genes bound by Polycomb repressive complex 2 in human embryonic stem cells. Our results not only provide mechanistic insight into the genetic and epigenetic mechanisms driving glioma progression but also identify inhibition of the bromodomain and extraterminal (BET) family as a potential therapeutic approach

    Whole Exome Sequencing Identifies Recessive Wdr62 Mutations In Severe Brain Malformations

    Get PDF
    The development of the human cerebral cortex is an orchestrated process involving the birth of neural progenitors in the peri-ventricular germinal zones, cell proliferation characterized by both symmetric and asymmetric mitoses, followed by migration of post-mitotic neurons to their final destinations in 6 highly ordered, functionally-specialized layers,. An understanding of the molecular mechanisms guiding these intricate processes is in its infancy, substantially driven by the discovery of rare mutations that cause malformations of cortical development (MCD)-. Mapping of disease loci in putative Mendelian forms of MCD has been hindered by marked locus heterogeneity, small kindred sizes and diagnostic classifications that may not reflect molecular pathogenesis. Here we demonstrate the use of whole-exome sequencing to overcome these obstacles by identifying recessive mutations in WDR62 as the cause of a wide spectrum of severe cerebral cortical malformations including microcephaly, pachygria with cortical thickening as well as hypoplasia of the corpus callosum. Some patients with WDR62 mutations had evidence of additional abnormalities including lissencephaly, schizencephaly, polymicrogyria and, in one instance, cerebellar hypoplasia, all traits traditionally regarded as distinct entities. In mouse and humans, WDR62 transcripts and protein are enriched in neural progenitors within the ventricular and subventricular zones. WDR62 expression in the neocortex is transient, spanning the period of embryonic neurogenesis. Unlike other known microcephaly genes, WDR62 does not apparently associate with centrosomes and is predominantly nuclear in localization. These findings unify previously disparate aspects of cerebral cortical development and highlight the utility of whole-exome sequencing to identify disease loci in settings in which traditional methods have proved challenging.PubMedWo
    corecore