15 research outputs found

    Method and software for using m-sequences to characterize parallel components of higher-order visual tracking behavior in Drosophila.

    Get PDF
    A moving visual figure may contain first-order signals defined by variation in mean luminance, as well as second-order signals defined by constant mean luminance and variation in luminance envelope, or higher-order signals that cannot be estimated by taking higher moments of the luminance distribution. Separating these properties of a moving figure to experimentally probe the visual subsystems that encode them is technically challenging and has resulted in debated mechanisms of visual object detection by flies. Our prior work took a white noise systems identification approach using a commercially available electronic display system to characterize the spatial variation in the temporal dynamics of two distinct subsystems for first- and higher-order components of visual figure tracking. The method relied on the use of single pixel displacements of two visual stimuli according to two binary maximum length shift register sequences (m-sequences) and cross-correlation of each m-sequence with time-varying flight steering measurements. The resultant spatio-temporal action fields represent temporal impulse responses parameterized by the azimuthal location of the visual figure, one STAF for first-order and another for higher-order components of compound stimuli. Here we review m-sequence and reverse correlation procedures, then describe our application in detail, provide Matlab code, validate the STAFs, and demonstrate the utility and robustness of STAFs by predicting the results of other published experimental procedures. This method has demonstrated how two relatively modest innovations on classical white noise analysis--the inclusion of space as a way to organize response kernels and the use of linear decoupling to measure the response to two channels of visual information simultaneously--could substantially improve our basic understanding of visual processing in the fly

    GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons

    No full text
    AMPA-type glutamate receptors mediate fast, excitatory neurotransmission in the brain, and their concentrations at synapses are important determinants of synaptic strength. We investigated the post-transcriptional regulation of GluA2, the calcium-impermeable AMPA receptor subunit, by examining the subcellular distribution of its mRNA and evaluating its translational regulation by microRNA in cultured mouse hippocampal neurons. Using computational approaches, we identified a conserved microRNA-124 (miR-124) binding site in the 3'UTR of GluA2 and demonstrated that miR-124 regulated the translation of GluA2 mRNA reporters in a sequence-specific manner in luciferase assays. While we hypothesized that this regulation might occur in dendrites, our biochemical and fluorescent in situ hybridization (FISH) data indicate that GluA2 mRNA does not localize to dendrites or synapses of mouse hippocampal neurons. In contrast, we detected significant concentrations of miR-124 in dendrites. Overexpression of miR-124 in dissociated neurons results in a 30% knockdown of GluA2 protein, as measured by immunoblot and quantitative immunocytochemistry, without producing any changes in GluA2 mRNA concentrations. While total GluA2 concentrations are reduced, we did not detect any changes in the concentration of synaptic GluA2. We conclude from these results that miR-124 interacts with GluA2 mRNA in the cell body to downregulate translation. Our data support a model in which GluA2 is translated in the cell body and subsequently transported to neuronal dendrites and synapses, and suggest that synaptic GluA2 concentrations are modified primarily by regulated protein trafficking rather than by regulated local translation

    Olfactory neuromodulation of motion vision circuitry in drosophila

    Get PDF
    SummaryIt is well established that perception is largely multisensory [1]; often served by modalities such as touch, vision, and hearing that detect stimuli emanating from a common point in space [2, 3]; and processed by brain tissue maps that are spatially aligned [4]. However, the neural interactions among modalities that share no spatial stimulus domain yet are essential for robust perception within noisy environments remain uncharacterized. Drosophila melanogaster makes its living navigating food odor plumes. Odor acts to increase the strength of gaze-stabilizing optomotor reflexes [5] to keep the animal aligned within an invisible plume, facilitating odor localization in free flight [6–8]. Here, we investigate the cellular mechanism for cross-modal behavioral interactions. We characterize a wide-field motion-selective interneuron of the lobula plate that shares anatomical and physiological similarities with the “Hx” neuron identified in larger flies [9, 10]. Drosophila Hx exhibits cross-modal enhancement of visual responses by paired odor, and presynaptic inputs to the lobula plate are required for behavioral odor tracking but are not themselves the target of odor modulation, nor is the neighboring wide-field “HSE” neuron [11]. Octopaminergic neurons mediating increased visual responses upon flight initiation [12] also show odor-evoked calcium modulations and form connections with Hx dendrites. Finally, restoring synaptic vesicle trafficking within the octopaminergic neurons of animals carrying a null mutation for all aminergic signaling [13] is sufficient to restore odor-tracking behavior. These results are the first to demonstrate cellular mechanisms underlying visual-olfactory integration required for odor localization in fruit flies, which may be representative of adaptive multisensory interactions across taxa

    GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons

    No full text
    AMPA-type glutamate receptors mediate fast, excitatory neurotransmission in the brain, and their concentrations at synapses are important determinants of synaptic strength. We investigated the post-transcriptional regulation of GluA2, the calcium-impermeable AMPA receptor subunit, by examining the subcellular distribution of its mRNA and evaluating its translational regulation by microRNA in cultured mouse hippocampal neurons. Using computational approaches, we identified a conserved microRNA-124 (miR-124) binding site in the 3'UTR of GluA2 and demonstrated that miR-124 regulated the translation of GluA2 mRNA reporters in a sequence-specific manner in luciferase assays. While we hypothesized that this regulation might occur in dendrites, our biochemical and fluorescent in situ hybridization (FISH) data indicate that GluA2 mRNA does not localize to dendrites or synapses of mouse hippocampal neurons. In contrast, we detected significant concentrations of miR-124 in dendrites. Overexpression of miR-124 in dissociated neurons results in a 30% knockdown of GluA2 protein, as measured by immunoblot and quantitative immunocytochemistry, without producing any changes in GluA2 mRNA concentrations. While total GluA2 concentrations are reduced, we did not detect any changes in the concentration of synaptic GluA2. We conclude from these results that miR-124 interacts with GluA2 mRNA in the cell body to downregulate translation. Our data support a model in which GluA2 is translated in the cell body and subsequently transported to neuronal dendrites and synapses, and suggest that synaptic GluA2 concentrations are modified primarily by regulated protein trafficking rather than by regulated local translation
    corecore