9,233 research outputs found

    A Requiem for Blockbusting: Law, Economics, and Race-Based Real Estate Speculation

    Get PDF

    Computing Real Roots of Real Polynomials

    Full text link
    Computing the roots of a univariate polynomial is a fundamental and long-studied problem of computational algebra with applications in mathematics, engineering, computer science, and the natural sciences. For isolating as well as for approximating all complex roots, the best algorithm known is based on an almost optimal method for approximate polynomial factorization, introduced by Pan in 2002. Pan's factorization algorithm goes back to the splitting circle method from Schoenhage in 1982. The main drawbacks of Pan's method are that it is quite involved and that all roots have to be computed at the same time. For the important special case, where only the real roots have to be computed, much simpler methods are used in practice; however, they considerably lag behind Pan's method with respect to complexity. In this paper, we resolve this discrepancy by introducing a hybrid of the Descartes method and Newton iteration, denoted ANEWDSC, which is simpler than Pan's method, but achieves a run-time comparable to it. Our algorithm computes isolating intervals for the real roots of any real square-free polynomial, given by an oracle that provides arbitrary good approximations of the polynomial's coefficients. ANEWDSC can also be used to only isolate the roots in a given interval and to refine the isolating intervals to an arbitrary small size; it achieves near optimal complexity for the latter task.Comment: to appear in the Journal of Symbolic Computatio

    The Cost of Address Translation

    Full text link
    Modern computers are not random access machines (RAMs). They have a memory hierarchy, multiple cores, and virtual memory. In this paper, we address the computational cost of address translation in virtual memory. Starting point for our work is the observation that the analysis of some simple algorithms (random scan of an array, binary search, heapsort) in either the RAM model or the EM model (external memory model) does not correctly predict growth rates of actual running times. We propose the VAT model (virtual address translation) to account for the cost of address translations and analyze the algorithms mentioned above and others in the model. The predictions agree with the measurements. We also analyze the VAT-cost of cache-oblivious algorithms.Comment: A extended abstract of this paper was published in the proceedings of ALENEX13, New Orleans, US

    Remarks on Category-Based Routing in Social Networks

    Full text link
    It is well known that individuals can route messages on short paths through social networks, given only simple information about the target and using only local knowledge about the topology. Sociologists conjecture that people find routes greedily by passing the message to an acquaintance that has more in common with the target than themselves, e.g. if a dentist in Saarbr\"ucken wants to send a message to a specific lawyer in Munich, he may forward it to someone who is a lawyer and/or lives in Munich. Modelling this setting, Eppstein et al. introduced the notion of category-based routing. The goal is to assign a set of categories to each node of a graph such that greedy routing is possible. By proving bounds on the number of categories a node has to be in we can argue about the plausibility of the underlying sociological model. In this paper we substantially improve the upper bounds introduced by Eppstein et al. and prove new lower bounds.Comment: 21 page

    Cache-Oblivious VAT-Algorithms

    Full text link
    The VAT-model (virtual address translation model) extends the EM-model (external memory model) and takes the cost of address translation in virtual memories into account. In this model, the cost of a single memory access may be logarithmic in the largest address used. We show that the VAT-cost of cache-oblivious algorithms is only by a constant factor larger than their EM-cost; this requires a somewhat more stringent tall cache assumption as for the EM-model

    Engineering DFS-Based Graph Algorithms

    Full text link
    Depth-first search (DFS) is the basis for many efficient graph algorithms. We introduce general techniques for the efficient implementation of DFS-based graph algorithms and exemplify them on three algorithms for computing strongly connected components. The techniques lead to speed-ups by a factor of two to three compared to the implementations provided by LEDA and BOOST. We have obtained similar speed-ups for biconnected components algorithms. We also compare the graph data types of LEDA and BOOST

    A Still Simpler Way of Introducing the Interior-Point Method for Linear Programming

    Full text link
    Linear programming is now included in algorithm undergraduate and postgraduate courses for computer science majors. We give a self-contained treatment of an interior-point method which is particularly tailored to the typical mathematical background of CS students. In particular, only limited knowledge of linear algebra and calculus is assumed.Comment: Updates and replaces arXiv:1412.065

    Computing Equilibria in Markets with Budget-Additive Utilities

    Get PDF
    We present the first analysis of Fisher markets with buyers that have budget-additive utility functions. Budget-additive utilities are elementary concave functions with numerous applications in online adword markets and revenue optimization problems. They extend the standard case of linear utilities and have been studied in a variety of other market models. In contrast to the frequently studied CES utilities, they have a global satiation point which can imply multiple market equilibria with quite different characteristics. Our main result is an efficient combinatorial algorithm to compute a market equilibrium with a Pareto-optimal allocation of goods. It relies on a new descending-price approach and, as a special case, also implies a novel combinatorial algorithm for computing a market equilibrium in linear Fisher markets. We complement these positive results with a number of hardness results for related computational questions. We prove that it is NP-hard to compute a market equilibrium that maximizes social welfare, and it is PPAD-hard to find any market equilibrium with utility functions with separate satiation points for each buyer and each good.Comment: 21 page

    An efficient algorithm for constructing nearly optimal prefix codes

    Get PDF
    A new algorithm for constructing nearly optimal prefix codes in the case of unequal letter costs and unequal probabilities is presented. A bound on the maximal deviation from the optimum is derived and numerical examples are given. The algorithm has running time O(t·n) where t is the number of letters and n is the number of probabilities
    corecore