9 research outputs found

    LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes

    Get PDF
    Germline mutations of the LKB1 (STK11) tumor suppressor gene lead to Peutz-Jeghers syndrome (PJS) and predisposition to cancer. LKB1 encodes a serine/threonine kinase generally inactivated in PJS patients. We identified the dual phosphatase and tumor suppressor protein PTEN as an LKB1-interacting protein. Several LKB1 point mutations associated with PJS disrupt the interaction with PTEN suggesting that the loss of this interaction might contribute to PJS. Although PTEN and LKB1 are predominantly cytoplasmic and nuclear, respectively, their interaction leads to a cytoplasmic relocalization of LKB1. In addition, we show that PTEN is a substrate of the kinase LKB1 in vitro. As PTEN is a dual phosphatase mutated in autosomal inherited disorders with phenotypes similar to those of PJS (Bannayan-Riley-Ruvalcaba syndrome and Cowden disease), our study suggests a functional link between the proteins involved in different hamartomatous polyposis syndromes and emphasizes the central role played by LKB1 as a tumor suppressor in the small intestin

    Molecular and Clinical Characteristics in 46 Families Affected with Peutz-Jeghers Syndrome

    Get PDF
    Germline mutations of the tumor suppressor gene LKB1/STK11 are responsible for the Peutz-Jeghers syndrome (PJS), an autosomal-dominant disorder characterized by mucocutaneous pigmentation, hamartomatous polyps, and an increased risk of associated malignancies. In this study, we assessed the presence of pathogenic mutations in the LKB1/STK11 gene in 46 unrelated PJS families, and also carried genotype-phenotype correlation in regard of the development of cancer in 170 PJS patients belonging to these families. All LKB1/STK11 variants detected with single-strand conformational polymorphism were confirmed by direct sequencing, and those without LKB1/STK11 mutation were further submitted to Southern blot analysis for detection of deletions/rearrangements. Statistical analysis for genotype-phenotype correlation was performed. In 59% (27/46) of unrelated PJS cases, pathogenic mutations in the LKB1/STK11 gene, including 9 novel mutations, were identified. The new mutations were 2 splice site deletion-insertions, 2 missenses, 1 nonsense, and 4 abnormal splice sites. Genotype-phenotype analysis did not yield any significant differences between patients carrying mutations in LKB1/STK11 versus those without mutations, even with respect to primary biliary adenocarcinoma. This study presents the molecular characterization and cancer occurrence of a large cohort of PJS patients, increases the mutational spectrum of LKB1/STK11 allelic variants worldwide, and provides a new insight useful for clinical diagnosis and genetic counseling of PJS familie

    LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes

    No full text
    Germline mutations of the LKB1 (STK11) tumor suppressor gene lead to Peutz-Jeghers syndrome (PJS) and predisposition to cancer. LKB1 encodes a serine/threonine kinase generally inactivated in PJS patients. We identified the dual phosphatase and tumor suppressor protein PTEN as an LKB1-interacting protein. Several LKB1 point mutations associated with PJS disrupt the interaction with PTEN suggesting that the loss of this interaction might contribute to PJS. Although PTEN and LKB1 are predominantly cytoplasmic and nuclear, respectively, their interaction leads to a cytoplasmic relocalization of LKB1. In addition, we show that PTEN is a substrate of the kinase LKB1 in vitro. As PTEN is a dual phosphatase mutated in autosomal inherited disorders with phenotypes similar to those of PJS (Bannayan-Riley-Ruvalcaba syndrome and Cowden disease), our study suggests a functional link between the proteins involved in different hamartomatous polyposis syndromes and emphasizes the central role played by LKB1 as a tumor suppressor in the small intestine

    Molecular and clinical characteristics in 46 families affected with Peutz-Jeghers syndrome

    No full text
    Germline mutations of the tumor suppressor gene LKB1/STK11 are responsible for the Peutz-Jeghers syndrome (PJS), an autosomal-dominant disorder characterized by mucocutaneous pigmentation, hamartomatous polyps, and an increased risk of associated malignancies. In this study, we assessed the presence of pathogenic mutations in the LKB1/STK11 gene in 46 unrelated PJS families, and also carried genotype-phenotype correlation in regard of the development of cancer in 170 PJS patients belonging to these families. All LKB1/STK11 variants detected with single-strand conformational polymorphism were confirmed by direct sequencing, and those without LKB1/STK11 mutation were further submitted to Southern blot analysis for detection of deletions/rearrangements. Statistical analysis for genotype-phenotype correlation was performed. In 59% (27/46) of unrelated PJS cases, pathogenic mutations in the LKB1/STK11 gene, including 9 novel mutations, were identified. The new mutations were 2 splice site deletion-insertions, 2 missenses, 1 nonsense, and 4 abnormal splice sites. Genotype-phenotype analysis did not yield any significant differences between patients carrying mutations in LKB1/STK11 versus those without mutations, even with respect to primary biliary adenocarcinoma. This study presents the molecular characterization and cancer occurrence of a large cohort of PJS patients, increases the mutational spectrum of LKB1/STK11 allelic variants worldwide, and provides a new insight useful for clinical diagnosis and genetic counseling of PJS families

    Regulating tumor suppressor genes: post-translational modifications

    No full text
    corecore