54 research outputs found

    The Effect of Iontophoretic-Delivered Polyplex Vaccine on Melanoma Regression

    Get PDF
    Although the strategy in cancer vaccination is to provide a therapeutic effect against an established tumor, there is an urgent need to develop prophylactic vaccines for non-viral cancers. In this study, we prepared polyplex nanoparticles through electrostatic interactions between a positively-charged modified tumor associated antigen, namely human derived melanoma gp10025–33 peptide (KVPRNQDWL-RRRR), and a negatively charged cytosine-phosphate-guanosine motif (CpG-ODN) adjuvant. We previously demonstrated successful transdermal delivery of various hydrophilic macromolecules by iontophoresis (IP) using weak electricity. Herein, we investigated the effectiveness of IP in the transdermal delivery of a prophylactic polyplex vaccine. IP was successful in establishing a homogenous distribution of the vaccine throughout skin. Efficacy of the vaccine was demonstrated against melanoma growth. A significant tumor regression effect was observed, which was confirmed by elevated mRNA expression levels of various cytokines, mainly interferon (IFN)-γ, as well as infiltration of cytotoxic CD8+ T cells. Additionally, we evaluated the therapeutic effect of the vaccine and we found a significant reduction in tumor burden. Stimulation of systemic immunity was confirmed by upregulation of IFN-γ. This is the first report to demonstrate the use of IP in the transdermal delivery of a prophylactic melanoma vaccine

    Comparative studies on the effects of water, ethanol and water/ethanol mixtures on chemical partitioning into porcine stratum corneum and silastic membrane

    Get PDF
    The effects of water and ethanol vehicles on stratum corneum and silastic membrane partitioning of 11 industrial and agricultural compounds were studied to aid in characterizing and assessing risk from skin exposure. Zero percent, 50% and 100% aqueous ethanol solutions were used as solvents for 14C labeled phenol, 4-nitrophenol, pentachlorophenol, dimethyl parathion, parathion, chloropyrifos, fenthion, triazine, atrazine, simazine and propazine. Compound partitioning between the solvents and porcine stratum corneum/silastic membrane were estimated. Stratum corneum was exposed to aqueous ethanol ranging from 0% to 100% v/v ethanol in 20% increments and Fourier transform infrared spectroscopy (FT-IR) was used to obtain an index of lipid disorder. Gravimetry and FT-IR were used to demonstrate lipid extraction in aqueous ethanol solutions. Partitioning patterns in silastic membranes resembled those in stratum corneum and were correlated with octanol/water partitioning. Partitioning was highest in water and was higher from 50% ethanol than from 100% ethanol, except for parathion, 4-nitrophenol, atrazine and propazine. Correlation existed between molecular weight and partitioning in water, but not in ethanol and ethanol/water mixtures. Lipid order, as reflected in FTIR spectra, was not altered. These studies suggest that stratum corneum partitioning of the compounds tested is primarily determined by relative compound solubility between the stratum corneum lipids and the donor solvent. Linear relationships existed between octanol/water partitioning and stratum corneum partitioning. Partitioning was also correlated with molecular weight in water solvent systems, but not in ethanol and ethanol/water mixtures. Ethanol and ethanol/water mixtures altered the stratum corneum through lipid extraction, rather than through disruption of lipid order
    • …
    corecore