5 research outputs found

    Intrapulmonary Pharmacokinetics of First-line Anti-tuberculosis Drugs in Malawian Patients With Tuberculosis

    Get PDF
    BACKGROUND: Further work is required to understand the intrapulmonary pharmacokinetics of first-line anti-tuberculosis drugs. This study aimed to describe the plasma and intrapulmonary pharmacokinetics of rifampicin, isoniazid, pyrazinamide, and ethambutol, and explore relationships with clinical treatment outcomes in patients with pulmonary tuberculosis. METHODS: Malawian adults with a first presentation of microbiologically-confirmed pulmonary tuberculosis received standard 6-month first-line therapy. Plasma and intrapulmonary samples were collected 8 and 16 weeks into treatment and drug concentrations measured in plasma, lung/airway epithelial lining fluid, and alveolar cells. Population pharmacokinetic modelling generated estimates of drug exposure (Cmax and AUC) from individual-level post-hoc Bayesian estimates of plasma and intrapulmonary pharmacokinetics. RESULTS: One-hundred-and-fifty-seven patients (58% HIV co-infected) participated. Despite standard weight-based dosing, peak plasma concentrations of first-line drugs were below therapeutic drug monitoring targets. Rifampicin concentrations were low in all three compartments. Isoniazid, pyrazinamide, and ethambutol achieved higher concentrations in epithelial lining fluid and alveolar cells than plasma. Isoniazid and pyrazinamide concentrations were 14.6 (95% CI: 11.2-18.0) and 49.8-fold (95% CI: 34.2-65.3) higher in lining fluid than plasma respectively. Ethambutol concentrations were highest in alveolar cells (alveolar cells:plasma ratio 15.0, 95% CI 11.4-18.6). Plasma or intrapulmonary pharmacokinetics did not predict clinical treatment response. CONCLUSIONS: We report differential drug concentrations between plasma and the lung. While plasma concentrations were below therapeutic monitoring targets, accumulation of drugs at the site of disease may explain the success of the first-line regimen. The low rifampicin concentrations observed in all compartments lend strong support for ongoing clinical trials of high-dose rifampicin regimens

    High intrapulmonary rifampicin and isoniazid concentrations are associated with rapid sputum bacillary clearance in patients with pulmonary tuberculosis

    Get PDF
    This work was supported by a Wellcome Trust Clinical PhD Fellowship [grant number 105392/B/14/Z to A.D.M. and L69AGB to JM]. ELC was supported by Wellcome [200901/Z/16/Z]. The Malawi-Liverpool-Wellcome Clinical Research Programme is supported by a strategic award from the Wellcome Trust [206545/Z/17/Z]. We also acknowledge infrastructural support for bioanalysis from the Liverpool Biomedical Research Centre funded by Liverpool Health Partners.Background Intrapulmonary pharmacokinetics may better explain response to tuberculosis (TB) treatment than plasma pharmacokinetics. We explored these relationships by modelling bacillary clearance in sputum in adult patients on first-line treatment in Malawi. Methods Bacillary elimination rates (BER) were estimated using linear mixed-effects modelling of serial time-to-positivity in mycobacterial growth indicator tubes for sputum collected during the intensive phase of treatment (weeks 0 to 8) for microbiologically confirmed TB. Population pharmacokinetic models used plasma and intrapulmonary drug levels at 8 and 16 weeks. Pharmacokinetic-pharmacodynamic relationships were investigated using individual-level measures of drug exposure (AUC and Cmax) for rifampicin, isoniazid, pyrazinamide, and ethambutol, in plasma, epithelial lining fluid, and alveolar cells as covariates in the bacillary elimination models. Results Among 157 participants (58% HIV co-infected), drug exposure in plasma or alveolar cells was not associated with sputum bacillary clearance. Higher peak concentrations (Cmax) or exposure (AUC) to rifampicin or isoniazid in epithelial lining fluid was associated with more rapid bacillary elimination and shorter time to sputum negativity. More extensive disease on baseline chest radiograph was associated with slower bacillary elimination. Clinical outcome was captured in 133 participants, with 15 (11%) unfavourable outcomes recorded (recurrent TB, failed treatment, or death). No relationship between BER and late clinical outcome was identified. Conclusions Greater intrapulmonary drug exposure to rifampicin or isoniazid in the epithelial lining fluid was associated with more rapid bacillary clearance. Higher doses of rifampicin and isoniazid may result in sustained high intrapulmonary drug exposure, rapid bacillary clearance, shorter treatment duration and better treatment outcomes.Publisher PDFPeer reviewe

    Intrapulmonary pharmacokinetics of first-line anti-TB drugs in Malawian tuberculosis patients

    No full text
    Background: Further work is required to understand the intrapulmonary pharmacokinetics of first-line anti-tuberculosis drugs. This study aimed to describe the plasma and intrapulmonary pharmacokinetics of rifampicin, isoniazid, pyrazinamide, and ethambutol, and explore relationships with clinical treatment outcomes in patients with pulmonary tuberculosis.Methods: Malawian adults with a first presentation of microbiologically-confirmed pulmonary tuberculosis received standard 6-month first-line therapy. Plasma and intrapulmonary samples were collected 8 and 16 weeks into treatment and drug concentrations measured in plasma, lung/airway epithelial lining fluid, and alveolar cells. Population pharmacokinetic modelling generated estimates of drug exposure (Cmax and AUC) from individual-level post-hoc Bayesian estimates of plasma and intrapulmonary pharmacokinetics.Results: One-hundred-and-fifty-seven patients (58% HIV co-infected) participated. Despite standard weight-based dosing, peak plasma concentrations of first-line drugs were below therapeutic drug monitoring targets. Rifampicin concentrations were low in all three compartments. Isoniazid, pyrazinamide, and ethambutol achieved higher concentrations in epithelial lining fluid and alveolar cells than plasma. Isoniazid and pyrazinamide concentrations were 14.6 (95% CI: 11.2-18.0) and 49.8-fold (95% CI: 34.2-65.3) higher in lining fluid than plasma respectively. Ethambutol concentrations were highest in alveolar cells (alveolar cells:plasma ratio 15.0, 95% CI 11.4-18.6). Plasma or intrapulmonary pharmacokinetics did not predict clinical treatment response.Conclusions: We report differential drug concentrations between plasma and the lung. While plasma concentrations were below therapeutic monitoring targets, accumulation of drugs at the site of disease may explain the success of the first-line regimen. The low rifampicin concentrations observed in all compartments lend strong support for ongoing clinical trials of high-dose rifampicin regimens.</p
    corecore