237 research outputs found
Report and preliminary results of Poseidon Cruise POS 272, Las Palmas - Las Palmas, 01.04.2001 - 14.04.2001
Numerical simulations have been done with the CHEMKINsoftware to study different aspects of wall effects in thecombustion of lean, laminar and premixed flames in anaxisymmetric boundary-layer flow. The importance of the chemical wall effects compared to thethermal wall effects caused by the development of the thermaland velocity boundary layer has been investigated in thereaction zone by using different wall boundary conditions, walltemperatures and fuel/air ratios. Surface mechanisms include acatalytic surface (Platinum), a surface that promotesrecombination of active intermediates and a completely inertwall with no species and reactions as the simplest possibleboundary condition. When hydrogen is the model fuel, the analysis of the resultsshow that for atmospheric pressure and a wall temperature of600 K, the surface chemistry gives significant wall effects atthe richer combustion case (f=0.5), while the thermal andvelocity boundary layer gives rather small effects. For theleaner combustion case (f=0.1) the thermal and velocityboundary layer gives more significant wall effects, whilesurface chemistry gives less significant wall effects comparedto the other case. For methane as model fuel, the thermal and velocity boundarylayer gives significant wall effects at the lower walltemperature (600 K), while surface chemistry gives rather smalleffects. The wall can then be modelled as chemically inert forthe lean mixtures used (f=0.2 and 0.4). For the higher walltemperature (1200 K) the surface chemistry gives significantwall effects. For both model fuels, the catalytic wall unexpectedlyretards homogeneous combustion of the fuel more than the wallthat acts like a sink for active intermediates. This is due toproduct inhibition by catalytic combustion. For hydrogen thisoccurs at atmospheric pressure, but for methane only at thehigher wall temperature (1200 K) and the higher pressure (10atm). As expected, the overall wall effects (i.e. a lowerconversion) were more pronounced for the leaner fuel-air ratiosand at the lower wall temperatures. To estimate a possible discrepancy in flame position as aresult of neglecting the axial diffusion in the boundary layerassumption, calculations have been performed with PREMIX, alsoa part of the CHEMKIN software. With PREMIX, where axialdiffusion is considered, steady, laminar, one-dimensionalpremixed flames can be modelled. Results obtained with the sameinitial conditions as in the boundary layer calculations showthat for the richer mixtures at atmospheric pressure the axialdiffusion generally has a strong impact on the flame position,but in the other cases the axial diffusion may beneglected. Keywords:wall effects, laminar premixed flames,platinum surfaces, boundary layer flowQC 2010050
An evaluation of 14C age relationships between co-occurring foraminifera, alkenones, and total organic carbon in continental margin sediments
Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA1016, doi:10.1029/2004PA001103.Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones and
total organic carbon in sediments from the continental margins of Southern Chile, Northwest
Africa and the South China Sea were compared with published results from the Namibian
margin. Age relationships between the sediment components are site-specific and relatively
constant over time. Similar to the Namibian slope, where alkenones have been reported to be
1000 to 4500 years older than co-occurring foraminifera, alkenones were significantly (~1000
yrs) older than co-occurring foraminifera in the Chilean margin sediments. In contrast,
alkenones and foraminifera were of similar age (within 2Ï error or better) in the NW African
and South China Sea sediments. Total-organic-matter and alkenone ages were similar off
Namibia (age difference TOC-alkenones: 200-700 years), Chile (100-450 years), and NW
Africa (360-770 years), suggesting minor contributions of pre-aged terrigenous material. In
the South China Sea total organic carbon is significantly (2000-3000 yrs) older due to greater
inputs of pre-aged terrigenous material.
Age offsets between alkenones and planktic foraminifera are attributed to lateral advection
of organic matter. Physical characteristics of the depositional setting, such as sea-floor
morphology, shelf width, and sediment composition, may control the age of co-occurring
2
sediment components. In particular, offsets between alkenones and foraminifera appear to be
greatest in deposition centers in morphologic depressions. Aging of organic matter is
promoted by transport. Age offsets are correlated with organic richness, suggesting that
formation of organic aggregate is a key process.GM and MK acknowledge financial support from the WHOI postdoctoral scholarship program. This work was funded by NSF grant OCE-0327405
Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic
Planktonic foraminifera preserved in marine sediments archive the physical and chemical conditions under which they built their shells. To interpret the paleoceano-graphic information contained in fossil foraminifera, the recorded proxy signals have to be attributed to the habitat and life cycle characteristics of individual species. Much of our knowledge on habitat depth is based on indirect methods, which reconstruct the depth at which the largest portion of the shell has been calcified. However, habitat depth can be best studied by direct observations in stratified plankton nets. Here we present a synthesis of living planktonic foraminifera abundance data in vertically resolved plankton net hauls taken in the eastern North Atlantic during 12 oceanographic campaigns between 1995 and 2012. Live (cytoplasm-bearing) specimens were counted for each depth interval and the vertical habitat at each station was expressed as average living depth (ALD). This allows us to differentiate species showing an ALD consistently in the upper 100m (e.g., Globigerinoides ruber white and pink), indicating a shallow habitat; species occurring from the surface to the subsurface (e.g., Globigerina bulloides, Globorotalia inflata, Globorotalia truncatulinoides); and species inhabiting the subsurface (e.g., Globorotalia scitula and Globorotalia hirsuta). For 17 species with variable ALD, we assessed whether their depth habitat at a given station could be predicted by mixed layer (ML) depth, temperature in the ML and chlorophyll a concentration in the ML. The influence of seasonal and lunar cycle on the depth habitat was also tested using periodic regression. In 11 out of the 17 tested species, ALD variation appears to have a predictable component. All of the tested parameters were significant in at least one case, with both seasonal and lunar cyclicity as well as the environmental parameters explaining up to >50% of the variance. Thus, G. truncatulinoides, G. hirsuta and G. scitula appear to descend in the water column towards the summer, whereas populations of Trilobatus sacculifer appear to descend in the water column towards the new moon. In all other species, properties of the mixed layer explained more of the observed variance than the periodic models. Chlorophyll a concentration seems least important for ALD, whilst shoaling of the habitat with deepening of the ML is observed most frequently. We observe both shoaling and deepening of species habitat with increasing temperature. Further, we observe that temperature and seawater density at the depth of the ALD were not equally variable among the studied species, and their variability showed no consistent relationship with depth habitat. According to our results, depth habitat of individual species changes in response to different environmental and ontogenetic factors and consequently planktonic foraminifera exhibit not only species-specific mean habitat depths but also species-specific changes in habitat depth.Portuguese Foundation for Science and Technology (FCT) [SFRH/BD/78016/2011]; MARUM - Center for Marine Environmental Sciences; European Union [228344-EUROFLEETS]; DFG (German Research Foundation) [WA2175/2-1, WA2175/4-1]; German Climate Modeling consortium PalMod - German Federal Ministry of Education and Research (BMBF); CANIGO project (EU) [MAS-CT96-0060]; DFGinfo:eu-repo/semantics/publishedVersio
- âŠ