106 research outputs found

    A characteristic lengthscale causes anomalous size effects and boundary programmability in mechanical metamaterials

    Get PDF
    The architecture of mechanical metamaterialsis designed to harness geometry, non-linearity and topology to obtain advanced functionalities such as shape morphing, programmability and one-way propagation. While a purely geometric framework successfully captures the physics of small systems under idealized conditions, large systems or heterogeneous driving conditions remain essentially unexplored. Here we uncover strong anomalies in the mechanics of a broad class of metamaterials, such as auxetics, shape-changers or topological insulators: a non-monotonic variation of their stiffness with system size, and the ability of textured boundaries to completely alter their properties. These striking features stem from the competition between rotation-based deformations---relevant for small systems---and ordinary elasticity, and are controlled by a characteristic length scale which is entirely tunable by the architectural details. Our study provides new vistas for designing, controlling and programming the mechanics of metamaterials in the thermodynamic limit.Comment: Main text has 4 pages, 4 figures + Methods and Supplementary Informatio

    Static non-reciprocity in mechanical metamaterials

    Full text link
    Reciprocity is a fundamental principle governing various physical systems, which ensures that the transfer function between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity have been mostly considered in dynamic systems, for electromagnetic, acoustic and mechanical wave propagation associated with spatio-temporal variations. Here we show that it is possible to strongly break reciprocity in static systems, realizing mechanical metamaterials that, by combining large nonlinearities with suitable geometrical asymmetries, and possibly topological features, exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. In addition to extending non-reciprocity and isolation to statics, our work sheds new light on the understanding of energy propagation in non-linear materials with asymmetric crystalline structures and topological properties, opening avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.Comment: 19 pages, 3 figures, Supplementary information (11 pages and 5 figures

    Cementitious Barriers Partnership (CBP): Training and Release of CBP Toolbox Software, Version 1.0 -13480

    Get PDF
    ABSTRACT The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the Office of Tank Waste Management within the Office of Environmental Management of U.S. Department of Energy (US DOE). The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that improve understanding and predictions of the long-term hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program are intended to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1,000 years for waste management purposes. CBP software tools were made available to selected DOE Office of Environmental Management and field site users for training and evaluation based on a set of important degradation scenarios, including sulfate ingress/attack and carbonation of cementitious materials. The tools were presented at two-day training workshops held at U.S. National Institute of Standards and Technology (NIST), Savannah River, and Hanford included LeachXS™/ORCHESTRA, STADIUM®, and a CBP-developed GoldSim Dashboard interface. Collectively, these components form the CBP Software ToolBox. The new U.S. Environmental Protection Agency leaching test methods based on the Leaching Environmental Assessment Framework (LEAF) were also presented. The CBP Dashboard uses a custom Dynamic-link library developed by CBP to couple to the LeachXS™/ORCHESTRA and STADIUM® codes to simulate reactive transport and degradation in cementitious materials for selected performance assessment scenarios. The first day of the workshop introduced participants to the software components via presentation materials, and the second day included hands-on tutorial exercises followed by discussions of enhancements desired by participants. Tools were revised based on feedbac

    Effects of experimental warming at the microhabitat scale on oak leaf traits and insect herbivory across a contrasting environmental gradient

    Get PDF
    10 páginas, 3 figuras, 2 tablasForest microclimatic variation can result in substantial temperature differences at local scales with concomitant impacts on plant defences and herbivory. Such microclimatic effects, however, may differ across abiotically contrasting sites depending on background environmental differences. To test these cross-scale effects shaping species ecological and evolutionary responses, we experimentally tested the effects of aboveground microhabitat warming on insect leaf herbivory and leaf defences (toughness, phenolic compounds) for saplings of sessile oak Quercus petraea across two abiotically contrasting sites spanning 9° latitude. We found higher levels of herbivory at the low-latitude site, but leaf traits showed mixed patterns across sites. Toughness and condensed tannins were higher at the high-latitude site, whereas hydrolysable tannins and hydroxycinnamic acids were higher at the low-latitude site. At the microhabitat scale, experimental warming increased herbivory, but did not affect any of the measured leaf traits. Condensed tannins were negatively correlated with herbivory, suggesting that they drive variation in leaf damage at both scales. Moreover, the effects of microhabitat warming on herbivory and leaf traits were consistent across sites, i.e. effects at the microhabitat scale play out similarly despite variation in factors acting at broader scales. These findings together suggest that herbivory responds to both microhabitat (warming) and broad-scale environmental factors, whereas leaf traits appear to respond more to environmental factors operating at broad scales (e.g. macroclimatic factors) than to warming at the microhabitat scale. In turn, leaf secondary chemistry (tannins) appears to drive both broad-scale and microhabitat-scale variation in herbivory. Further studies are needed using reciprocal transplants with more populations across a greater number of sites to tease apart plant plasticity from genetic differences contributing to leaf trait and associated herbivory responses across scales and, in doing so, better understand the potential for dynamics such as local adaptation and range expansion or contraction under shifting climatic regimes.This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (ERC Starting Grant FORMICA 757833, 2018, www.formica.ugent.be) to PDF, CM, KDP and PS, a grant from the Spanish National Research Council (2021AEP082) to XM, and a grant from the Regional Government of Galicia (IN607A 2021/03) to XM.Peer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Change-of-state Paradigms and the middle in Kinyarwanda

    Get PDF
    This paper investigates the derivational relationships among members of verbal paradigms in Kinyarwanda (Bantu JD.61; Rwanda) by pursuing two interrelated goals. First, I describe a variety of derivational strategies for marking transitive and intransitive variants in change-of-state verb paradigms. Second, I focus on the detransitivizing morpheme –ik which serves as one possible marking for intransitive members of these paradigms. Ultimately, I argue that this morpheme is a marker of middle voice, and the variety of readings which appear with this form can be subsumed under a single operation of argument suppression. Finally, I provide a discussion of reflexives and the apparent lack of a reflexive reading with –ik by arguing that this reading is blocked by either lexical reflexives or the reflexive prefix i–
    corecore