494 research outputs found

    Influence of drip lateral placement depth and fertigation level on germination, yield and water-use efficiency of cucumber (Cucumis sativus)

    Get PDF
    A field experiment was conducted from February to June for three years (2009-2011) to evaluate the response of cucumber (Cucumis sativus L.) under 0 (surface) (D00), 5(D05), 10 (D10) and 15 (D15) cm depth of lateral placement and four levels of fertilizer application with NPK in the ratio of 50:30:30, 100:60:60, 120:90:90 and 150:120:120 kg/ ha (F1, F2, F3 and F4). Uniformity of water application through subsurface drip irrigation (SDI) system was assessed every year. Soil moisture content in root zone, germination percentage, vine length and yield per plot were recorded and irrigation water use efficiency (IWUE) was estimated.It was observed that soil moisture content was higher and moisture profile was more uniform under SDI. Shallower depths of lateral, D00 and D05, resulted in higher seed germination percentage (92.8 and 90.2 %). Increased moisture and nutrient availability under D10 and D15 resulted in higher vine length (2.49 and 2.36m). During 2011, treatments D10 and D15 recorded highest mean yields of 31.7 and 32.9 t/ha, respectively. Fertigation level F3 recorded consistently higher mean yields for three consecutive cropping seasons yielding higher mean IWUE under D10 (0.49 to 0.81 t/ha/cm) and D15 (0.50 to 0.85 t/ha/cm).The results showed that SDI maintained uniform moisture in soil profile, minimized the evaporative loss and consequently increased IWUE. The SDI system with lateral placement depth of10 cm and fertigation level F3 is recommended as an optimum practice for better yields and increased IWUE of cucumber cultivation. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    Occurrence of hetero-branching of spike in bread wheat (T. aestivum L.)

    Get PDF

    Homozygous R627W mutations in POLG cause mitochondrial DNA depletion leading to encephalopathy, seizures and stroke-like episodes

    Get PDF
    Mutations in the mitochondrial DNA maintenance gene POLG (DNA Polymerase Gamma, Catalytic Subunit), encoding mitochondrial DNA polymerase gamma (pol γ), are associated with an extremely broad phenotypic spectrum. We identified homozygous POLG c.1879C>T; p.R627W mutations in two siblings from a consanguineous South Asian family following targeted resequencing of 75 nuclear-encoded mitochondrial genes. Both patients presented with encephalopathy, seizures and stroke-like episodes, and mitochondrial DNA depletion was confirmed in the proband's muscle tissue. Subsequent Sanger sequencing of POLG in a further 275 unrelated probands with genetically unconfirmed mitochondrial disease revealed a third unrelated proband with a similar phenotype harboring homozygous c.1879C>T; p.R627W mutations and a fourth patient, with a milder clinical disorder, harboring compound heterozygous POLG c.1879C>T; p.R627W and c.2341G>A; p.A781T mutations. Given endogamous practices in the Indian subcontinent, homozygous POLG c.1879C>T; p.R627W mutations should be excluded in South Asian patients presenting with encephalopathy, seizures and stroke-like episodes

    A contemporary review on drought modeling using machine learning approaches

    Get PDF
    Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Its beginning and end are hard to gauge, and they can last for months or even for years. India has faced many droughts in the last few decades. Predicting future droughts is vital for framing drought management plans to sustain natural resources. The data-driven modelling for forecasting the metrological time series prediction is becoming more powerful and flexible with computational intelligence techniques. Machine learning (ML) techniques have demonstrated success in the drought prediction process and are becoming popular to predict the weather, especially the minimum temperature using backpropagation algorithms. The favourite ML techniques for weather forecasting include singular vector machines (SVM), support vector regression, random forest, decision tree, logistic regression, Naive Bayes, linear regression, gradient boosting tree, k-nearest neighbours (KNN), the adaptive neuro-fuzzy inference system, the feed-forward neural networks, Markovian chain, Bayesian network, hidden Markov models, and autoregressive moving averages, evolutionary algorithms, deep learning and many more. This paper presents a recent review of the literature using ML in drought prediction, the drought indices, dataset, and performance metrics

    Effect of Body Mass Index on work related musculoskeletal discomfort and occupational stress of computer workers in a developed ergonomic setup

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Work urgency, accuracy and demands compel the computer professionals to spend longer hours before computers without giving importance to their health, especially body weight. Increase of body weight leads to improper Body Mass Index (BMI) may aggravate work related musculoskeletal discomfort and occupational-psychosocial stress. The objective of the study was to find out the effect of BMI on work related musculoskeletal discomforts and occupational stress of computer workers in a developed ergonomic setup.</p> <p>Methods</p> <p>A descriptive inferential study has been taken to analyze the effect of BMI on work related musculoskeletal discomfort and occupational-psychosocial stress. A total of 100 computer workers, aged 25-35 years randomly selected on convenience from software and BPO companies in Bangalore city, India for the participation in this study. BMI was calculated by taking the ratio of the subject's height (in meter) and weight (in kilogram). Work related musculoskeletal discomfort and occupational stress of the subjects was assessed by Cornell University's musculoskeletal discomfort questionnaire (CMDQ) and occupational stress index (OSI) respectively as well as a relationship was checked with their BMI.</p> <p>Results</p> <p>A significant association (p < 0.001) was seen among high BMI subjects with their increase scores of musculoskeletal discomfort and occupational stress.</p> <p>Conclusion</p> <p>From this study, it has been concluded that, there is a significant effect of BMI in increasing of work related musculoskeletal discomfort and occupational-psychosocial stress among computer workers in a developed ergonomic setup.</p

    Comparative Genomics of Cell Envelope Components in Mycobacteria

    Get PDF
    Mycobacterial cell envelope components have been a major focus of research due to their unique features that confer intrinsic resistance to antibiotics and chemicals apart from serving as a low-permeability barrier. The complex lipids secreted by Mycobacteria are known to evoke/repress host-immune response and thus contribute to its pathogenicity. This study focuses on the comparative genomics of the biosynthetic machinery of cell wall components across 21-mycobacterial genomes available in GenBank release 179.0. An insight into survival in varied environments could be attributed to its variation in the biosynthetic machinery. Gene-specific motifs like ‘DLLAQPTPAW’ of ufaA1 gene, novel functional linkages such as involvement of Rv0227c in mycolate biosynthesis; Rv2613c in LAM biosynthesis and Rv1209 in arabinogalactan peptidoglycan biosynthesis were detected in this study. These predictions correlate well with the available mutant and coexpression data from TBDB. It also helped to arrive at a minimal functional gene set for these biosynthetic pathways that complements findings using TraSH

    Downregulation of uPAR and Cathepsin B Induces Apoptosis via Regulation of Bcl-2 and Bax and Inhibition of the PI3K/Akt Pathway in Gliomas

    Get PDF
    Glioma is the most commonly diagnosed primary brain tumor and is characterized by invasive and infiltrative behavior. uPAR and cathepsin B are known to be overexpressed in high-grade gliomas and are strongly correlated with invasive cancer phenotypes.In the present study, we observed that simultaneous downregulation of uPAR and cathepsin B induces upregulation of some pro-apoptotic genes and suppression of anti-apoptotic genes in human glioma cells. uPAR and cathepsin B (pCU)-downregulated cells exhibited decreases in the Bcl-2/Bax ratio and initiated the collapse of mitochondrial membrane potential. We also observed that the broad caspase inhibitor, Z-Asp-2, 6-dichlorobenzoylmethylketone rescued pCU-induced apoptosis in U251 cells but not in 5310 cells. Immunoblot analysis of caspase-9 immunoprecipitates for Apaf-1 showed that uPAR and cathepsin B knockdown activated apoptosome complex formation in U251 cells. Downregulation of uPAR and cathepsin B also retarded nuclear translocation and interfered with DNA binding activity of CREB in both U251 and 5310 cells. Further western blotting analysis demonstrated that downregulation of uPAR and cathepsin B significantly decreased expression of the signaling molecules p-PDGFR-β, p-PI3K and p-Akt. An increase in the number of TUNEL-positive cells, increased Bax expression, and decreased Bcl-2 expression in nude mice brain tumor sections and brain tissue lysates confirm our in vitro results.In conclusion, RNAi-mediated downregulation of uPAR and cathepsin B initiates caspase-dependent mitochondrial apoptosis in U251 cells and caspase-independent mitochondrial apoptosis in 5310 cells. Thus, targeting uPAR and cathepsin B-mediated signaling using siRNA may serve as a novel therapeutic strategy for the treatment of gliomas

    Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography–mass spectrometry-olfactometry

    Get PDF
    Lions (Panthera leo) use chemical signaling to indicate health, reproductive status, and territorial ownership. To date, no study has reported on both scent and composition of marking fluid (MF) from P. leo. The objectives of this study were to: 1) develop a novel method for simultaneous chemical and scent identification of lion MF in its totality (urine + MF), 2) identify characteristic odorants responsible for the overall scent of MF as perceived by human panelists, and 3) compare the existing library of known odorous compounds characterized as eliciting behaviors in animals in order to understand potential functionality in lion behavior. Solid-phase microextraction and simultaneous chemical-sensory analyses with multidimensional gas-chromatography-mass spectrometry-olfactometry improved separating, isolating, and identifying mixed (MF, urine) compounds versus solvent-based extraction and chemical analyses. 2,5-Dimethylpyrazine, 4-methylphenol, and 3-methylcyclopentanone were isolated and identified as the compounds responsible for the characteristic odor of lion MF. Twenty-eight volatile organic compounds (VOCs) emitted from MF were identified, adding a new list of compounds previously unidentified in lion urine. New chemicals were identified in nine compound groups: ketones, aldehydes, amines, alcohols, aromatics, sulfur-containing compounds, phenyls, phenols, and volatile fatty acids. Twenty-three VOCs are known semiochemicals that are implicated in attraction, reproduction, and alarm-signaling behaviors in other species
    • …
    corecore