26 research outputs found
Book reviews
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45645/1/11199_2004_Article_BF00287975.pd
Effects of Chronic Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants on the Reproductive and Thyroid System in Adult Male Rats
Brominated flame retardants (BFRs) are incorporated into a wide variety of consumer products, are readily released into home and work environments, and are present in house dust. Studies using animal models have revealed that exposure to polybrominated diphenyl ethers (PBDEs) may impair adult male reproductive function and thyroid hormone physiology. Such studies have generally characterized the outcome of acute or chronic exposure to a single BFR technical mixture or congener but not the impact of environmentally relevant BFR mixtures. We tested whether exposure to the BFRs found in house dust would have an adverse impact on the adult male rat reproductive system and thyroid function. Adult male Sprague Dawley rats were exposed to a complex BFR mixture composed of three commercial brominated diphenyl ethers (52.1% DE-71, 0.4% DE-79, and 44.2% decaBDE-209) and hexabromocyclododecane (3.3%), formulated to mimic the relative congener levels in house dust. BFRs were delivered in the diet at target doses of 0, 0.02, 0.2, 2, or 20 mg/kg/day for 70 days. Compared with controls, males exposed to the highest dose of BFRs displayed a significant increase in the weights of the kidneys and liver, which was accompanied by induction of CYP1A and CYP2B P450 hepatic drug–metabolizing enzymes. BFR exposure did not affect reproductive organ weights, serum testosterone levels, testicular function, or sperm DNA integrity. The highest dose caused thyroid toxicity as indicated by decreased serum thyroxine (T4) and hypertrophy of the thyroid gland epithelium. At lower doses, the thickness of the thyroid gland epithelium was reduced, but no changes in hormone levels (T4 and thyroid-stimulating hormone) were observed. Thus, exposure to BFRs affected liver and thyroid physiology but not male reproductive parameters
A study of the diagnostic accuracy of the PHQ-9 in primary care elderly
<p>Abstract</p> <p>Background</p> <p>The diagnostic accuracy of the Patient Health Questionnaire-9 (PHQ-9) for assessment of depression in elderly persons in primary care settings in the United States has not been previously addressed. Thus, the purpose of this study was to evaluate the test performance of the PHQ-9 for detecting major and minor depression in elderly patients in primary care.</p> <p>Methods</p> <p>A prospective study of diagnostic accuracy was conducted in two primary care, university-based clinics in the Pacific Northwest of the United States. Seventy-one patients aged 65 years or older participated; all completed the PHQ-9 and the 15-item Geriatric Depression Scale (GDS) and underwent the Structured Clinical Interview for Depression (SCID). Sensitivity, specificity, area under the receiver operating characteristic (ROC) curve, and likelihood ratios (LRs) were calculated for the PHQ-9, the PHQ-2, and the 15-item GDS for major depression alone and the combination of major plus minor depression.</p> <p>Results</p> <p>Two thirds of participants were female, with a mean age of 78 and two chronic health conditions. Twelve percent met SCID criteria for major depression and 13% minor depression. The PHQ-9 had an area under the curve (AUC) of 0.87 (95% confidence interval [CI], 0.74-1.00) for major depression, while the PHQ-2 and the 15-item GDS each had an AUC of 0.81 (95% CI for PHQ-2, 0.64-0.98, and for 15-item GDS, 0.70-0.91; <it>P </it>= 0.551). For major and minor depression combined, the AUC for the PHQ-9 was 0.85 (95% CI, 0.73-0.96), for the PHQ-2, 0.80 (95% CI, 0.68-0.93), and for the 15-item GDS, 0.71 (95% CI, 0.55-0.87; <it>P </it>= 0.187).</p> <p>Conclusions</p> <p>Based on AUC values, the PHQ-9 performs comparably to the PHQ-2 and the 15-item GDS in identifying depression among primary care elderly.</p
Loss of ATRX, Genome Instability, and an Altered DNA Damage Response Are Hallmarks of the Alternative Lengthening of Telomeres Pathway
<div><p>The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the <em>ATRX</em> gene are hallmarks of ALT–immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB) repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.</p> </div