72 research outputs found

    Identification of the niche and phenotype of the first human hematopoietic stem cells

    Get PDF
    SummaryIn various vertebrate species, the dorsal aorta (Ao) is the site of specification of adult hematopoietic stem cells (HSCs). It has been observed that the upregulation of essential hematopoietic transcription factors and the formation of specific intra-aortic hematopoietic cell clusters occur predominantly in the ventral domain of the Ao (AoV). In the mouse, the first HSCs emerge in the AoV. Here, we demonstrate that in the human embryo the first definitive HSCs also emerge asymmetrically and are localized to the AoV, which thus identifies a functional niche for developing human HSCs. Using magnetic cell separation and xenotransplantations, we show that the first human HSCs are CD34+VE-cadherin+CD45+C-KIT+THY-1+Endoglin+RUNX1+CD38−/loCD45RA−. This population harbors practically all committed hematopoietic progenitors and is underrepresented in the dorsal domain of the Ao (AoD) and urogenital ridges (UGRs). The present study provides a foundation for analysis of molecular mechanisms underpinning embryonic specification of human HSCs

    Endothelio-hematopoietic relationship: getting closer to the beginnings

    Get PDF
    The close association between hematopoietic and endothelial cells during embryonic development led to the proposal that they may originate from a common ancestor - the hemangioblast. Due to a lack of unique specific markers for in vivo cell fate tracking studies, evidence supporting this theory derives mainly from in vitro differentiation studies. Teixeira and colleagues describe a novel enhancer that drives specific eGFP expression in blood islands of the electroporated chick embryo, thereby presenting a tool potentially suitable for analysis of hemangioblast differentiation and development of blood islands

    Mouse extraembryonic arterial vessels harbor precursors capable of maturing into definitive HSCs

    Get PDF
    During mouse development, definitive hematopoietic stem cells (dHSCs) emerge by late E10.5 to E11 in several hematopoietic sites. Of them, the aorta-gonad-mesonephros (AGM) region drew particular attention owing to its capacity to autonomously initiate and expand dHSCs in culture, indicating its key role in HSC development. The dorsal aorta contains characteristic hematopoietic clusters and is the initial site of dHSC emergence, where they mature through vascular endothelial (VE)-cadherin(+)CD45(–)CD41(low) (type 1 pre-HSCs) and VE-cadherin(+)CD45(+) (type 2 pre-HSCs) intermediates. Although dHSCs were also found in other embryonic niches (placenta, yolk sac, and extraembryonic vessels), attempts to detect their HSC initiating potential have been unsuccessful to date. Extraembryonic arterial vessels contain hematopoietic clusters, suggesting that they develop HSCs, but functional evidence for this has been lacking. Here we show that umbilical cord and vitelline arteries (VAs), but not veins, contain pre-HSCs capable of maturing into dHSCs in the presence of exogenous interleukin 3, although in fewer numbers than the AGM region, and that pre-HSC activity in VAs increases with proximity to the embryo proper. Our functional data strongly suggest that extraembryonic arteries can actively contribute to adult hematopoiesis
    • 

    corecore