255 research outputs found

    Questing Ixodes ricinus ticks and Borrelia spp. in urban green space across Europe: A review

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in Appendices S1 and S2.For more than three decades, it has been recognized that Ixodes ricinus ticks occur in urban green space in Europe and that they harbour multiple pathogens linked to both human and animal diseases. Urban green space use for health and well-being, climate mitigation or biodiversity goals is promoted, often without consideration for the potential impact on tick encounters or tick-borne disease outcomes. This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp. infections in ticks in urban green space in 24 European countries. It presents data on several risk indicators for Lyme borreliosis and highlights key research gaps and recommendations for future studies. Across Europe, mean density of I. ricinus in urban green space was 6.9 (range; 0.1–28.8) per 100 m2 and mean Borrelia prevalence was 17.3% (range; 3.1%–38.1%). Similar density estimates were obtained for nymphs, which had a Borrelia prevalence of 14.2% (range; 0.5%–86.7%). Few studies provided data on both questing nymph density and Borrelia prevalence, but those that did found an average of 1.7 (range; 0–5.6) Borrelia-infected nymphs per 100 m2 of urban green space. Although a wide range of genospecies were reported, Borrelia afzelii was the most common in most parts of Europe, except for England where B. garinii was more common. The emerging pathogen Borrelia miyamotoi was also found in several countries, but with a much lower prevalence (1.5%). Our review highlights that I. ricinus and tick-borne Borrelia pathogens are found in a wide range of urban green space habitats and across several seasons. The impact of human exposure to I. ricinus and subsequent Lyme borreliosis incidence in urban green space has not been quantified. There is also a need to standardize sampling protocols to generate better baseline data for the density of ticks and Borrelia prevalence in urban areas.National Institute for Health Research (NIHR

    Ixodes ricinus density, Borrelia prevalence and the density of infected nymphs along an urban-rural gradient in southern England

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the supplementary file.Ticks are found across a range of habitats, with woodland being particularly important for high densities and prevalence of Borrelia infection. Assessments of risk in urban woodland can be difficult if there are low densities and small sample sizes for Borrelia prevalence estimates. This study targeted six urban woodlands with established tick populations, as well as six woodlands in peri-urban zones and six woodlands in rural zones in and around the cities of Bath and Southampton, in the South of England. Nymph densities were estimated, and 100 nymphs were tested from each of the 18 woodlands studied. Ixodes ricinus ticks were found in all woodlands surveyed, and overall density of nymphs (DON) per 100 m2 was 18.17 in urban woodlands, 26.0 in peri-urban woodlands and 17.67 in rural woodlands. Out of 600 nymphs tested across urban woodlands, 10.3% were infected with Borrelia. The same proportion of nymphs collected in rural woodlands were positive for Borrelia. In peri-urban woodlands, 10.8% of nymphs tested positive. Across both cities combined, density of infected nymphs (DIN) was 2.73 per 100 m2 in peri-urban woodland, 1.87 per 100 m2 in urban woodland and 1.82 per 100 m2 in rural woodland. Overall, DON, Borrelia prevalence and DIN did not differ significantly along an urban-rural gradient. This suggests the risk of Lyme borreliosis transmission could be similar, or perhaps even elevated in urban woodland if there is higher public footfall, subsequent contact with ticks and less awareness of the risks. This is particularly important from a public health perspective, as Borrelia garinii dominated across the gradient and this genospecies is linked to neuroborreliosis.National Institute for Health Research (NIHR

    Enhanced West Nile virus surveillance in the North Kent marshes, UK

    Get PDF
    Background As part of efforts to more fully understand the potential risks posed by West Nile virus (WNV) and Usutu virus (USUV) in the UK, and following on from previous reports of a potential bridge vector Culex modestus for these viruses, at wetland sites in North Kent, mosquito surveillance was undertaken more widely across the Isle of Sheppey, the Hoo Peninsula and the Kent mainland. Methods Larval surveys were conducted and Mosquito MagnetÂź adult traps were used to collect adult mosquitoes. Pools of female mosquitoes were tested for the presence of WNV using real-time reverse transcriptase polymerase chain reaction. A subset of samples was tested for USUV. Results Culex modestus was found in both the pre-imaginal and imago stage at all five locations surveyed, accounting for 90% of adult mosquitoes collected. WNV or USUV were not detected in any sample. Conclusions Although no mosquitoes have been shown to be virus positive, the field survey data from this study demonstrated the dominance of an important bridge vector species for WNV in this region. Its wide geographical distribution highlights the need to update risk assessments on WNV introduction, and to maintain vigilance for WNV in the South East of England

    Discovery of a single male Aedes aegypti (L.) in Merseyside, England

    Get PDF
    © The Author(s). 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The file attached is the published (publishers PDF) version of the article

    Surveillance of Ixodes ricinus ticks (Acari: Ixodidae) in Iceland

    Get PDF
    Background: Ixodes ricinus is a three-host tick, a principal vector of Borrelia burgdorferi (s.l.) and one of the main vectors of tick-borne encephalitis (TBE) virus. Iceland is located in the North Atlantic Ocean with subpolar oceanic climate. During the past 3–4 decades, average temperature has increased, supporting more favourable conditions for ticks. Reports of I. ricinus have increased in recent years. If these ticks were able to establish in a changing climate, Iceland may face new threats posed by tick-borne diseases. Methods: Active field surveillance by tick flagging was conducted at 111 sites around Iceland from August 2015 to September 2016. Longworth mammal traps were used to trap Apodemus sylvaticus in southwestern and southern Iceland. Surveillance on tick importation by migratory birds was conducted in southeastern Iceland, using bird nets and a Heligoland trap. Vulpes lagopus carcasses from all regions of the country were inspected for ticks. In addition, existing and new passive surveillance data from two institutes have been merged and are presented. Continental probability of presence models were produced. Boosted Regression Trees spatial modelling methods and its predictions were assessed against reported presence. Results: By field sampling 26 questing I. ricinus ticks (7 males, 3 females and 16 nymphs) were collected from vegetation from three locations in southern and southeastern Iceland. Four ticks were found on migratory birds at their arrival in May 2016. A total of 52 A. sylvaticus were live-trapped but no ticks were found nor on 315 V. lagopus carcasses. Passive surveillance data collected since 1976, reports further 214 I. ricinus ticks from 202 records, with an increase of submissions in recent years. The continental probability of presence model correctly predicts approximately 75% of the recorded presences, but fails to predict a fairly specific category of recorded presence in areas where the records are probably opportunistic and not likely to lead to establishment. Conclusions: To the best of our knowledge, this study represents the first finding of questing I. ricinus ticks in Iceland. The species could possibly be established locally in Iceland in low abundance, although no questing larvae have yet been detected to confirm established populations. Submitted tick records have increased recently, which may reflect an increase in exposure, or in interest in ticks. Furthermore, the amount of records on dogs, cats and humans indicate that ticks were acquired locally, presenting a local biting risk. Tick findings on migratory birds highlight a possible route of importation. Obtaining questing larvae is now a priority to confirm that I. ricinus populations are established in Iceland. Further surveys on wild mammals (e.g. Rangifer tarandus), livestock and migratory birds are recommended to better understand their role as potential hosts for I. ricinus.Work was carried out under VectorNet, a European network for sharing data on the geographic distribution of arthropod vectors, transmitting human and animal disease agents (framework contract OC/EFSA/AHAW/2013/02-FWC1) funded by the European Food Safety Authority (EFSA) and the European Centre for Disease prevention and Control (ECDC). JM is also partly funded by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Change and Health at the London School of Hygiene & Tropical Medicine in partnership with Public Health England (PHE), and in collaboration with the University of Exeter, University College London, and the Met Office; and partly funded by the NIHR HPRU on Emerging Infections and Zoonoses at the University of Liverpool in partnership with PHE and Liverpool School of Tropical Medicine.Peer Reviewe

    Impact of green space connectivity on urban tick presence, density and Borrelia infected ticks in different habitats and seasons in three cities in southern England

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Elsevier via the DOI in this recordData Availability: Data will be made available on request.Understanding the effects of local habitat and wider landscape connectivity factors on tick presence, nymph density and Borrelia species (spp.) prevalence in the tick population is important for identifying the public health risk from Lyme borreliosis. This multi-city study collected data in three southern England cities (Bath, Bristol, and Southampton) during spring, summer, and autumn in 2017. Focusing specifically on urban green space used for recreation which were clearly in urbanised areas, 72 locations were sampled. Additionally, geospatial datasets on urban green space coverage within 250 m and 1 km of sampling points, as well as distance to woodland were incorporated into statistical models. Distance to woodland was negatively associated with tick presence and nymph density, particularly during spring and summer. Furthermore, we observed an interaction effect between habitat and season for tick presence and nymph density, with woodland habitat having greater tick presence and nymph density during spring. Borrelia spp. infected Ixodes ricinus were found in woodland, woodland edge and under canopy habitats in Bath and Southampton. Overall Borrelia spp. prevalence in nymphs was 2.8%, similar to wider UK studies assessing prevalence in Ixodes ricinus in rural areas. Bird-related Borrelia genospecies dominated across sites, suggesting bird reservoir hosts may be important in urban green space settings for feeding and infecting ticks. Whilst overall density of infected nymphs across the three cities was low (0.03 per 100 m2), risk should be further investigated by incorporating data on tick bites acquired in urban settings, and subsequent Lyme borreliosis transmission.National Institute for Health Research (NIHR

    Assessing public perception of a sand fly biting study on the pathway to a controlled 2 human infection model for cutaneous leishmaniasis

    Get PDF
    BACKGROUND: A controlled human infection model (CHIM) involves deliberate exposure of volunteers to pathogens to assess their response to new therapies at an early stage of development. We show here how we used public involvement to help shape the design of a CHIM to support future testing of candidate vaccines for the neglected tropical disease cutaneous leishmaniasis, a disease transmitted by the bite of infected sand flies in tropical regions. METHODS: We undertook a public involvement (PI) consultation exercise to inform development of a study to test the safety and effectiveness of a sand fly biting protocol using uninfected sand flies (FLYBITE: ClinicalTrials.gov ID NCT03999970 ) and a CHIM using Leishmania major-infected sand flies (LEISH_Challenge: ClinicalTrials.gov ID NCT04512742 ), both taking place in York, UK. We involved 10 members of the public including a patient research ambassador and a previous CHIM volunteer. The session took place at The University of York, UK and examined draft study volunteer-facing material and included the CHIM study design, potential adverse events and therapeutic interventions at study endpoints. A discussion of the scientific, ethical, humanitarian and economic basis for the project was presented to the participants to provoke discourse. An inductive, thematic analysis was used to identify the participants' key concerns. RESULTS: Themes were identified relating to i) quality of volunteer-facing written information, ii) improving study design, and iii) factors to motivate involvement in the research. Group participants responded positively to the overall study aims. Initial concerns were expressed about potential risks of study involvement, but further explanation of the science and mitigations of risk secured participant support. Participants provided advice and identified improved terminology to inform the volunteer-facing material. Lastly, treatment options were discussed, and excision of any cutaneous lesion was favoured over alternatives as a treatment. CONCLUSION: The consultation exercise provided invaluable information which led to improved study design and enhanced clarity in the volunteer-facing material. The session also reinforced the need to maintain public trust in scientific rigour prior to initiation of any study. The investigators hope that this description strengthens understanding of PI in clinical research, and encourages its use within other studies

    Study of general practitioner consultations for tick bites at high, medium and low incidence areas for Lyme borreliosis in England and Wales

    Get PDF
    Lyme borreliosis (LB) is a tick‐borne disease caused by Borrelia burgdorferi sensu lato complex. In Europe, it is predominately transmitted by the sheep tick, Ixodes ricinus. Compared with other European countries, the United Kingdom (UK) is considered to have a low incidence of LB, although this varies regionally. To determine whether an association exists between tick bite consultations and LB incidence in the UK, retrospective questionnaires were sent to general practitioners (GPs) in high (Wiltshire), medium (Cumbria) and low (Wales) incidence areas. During 2011, the greatest incidence of consultations for tick bites was reported by GPs in Cumbria (204 consultations per 100,000 inhabitants), followed by Wiltshire (160 per 100,000 population) and Wales (54 per 100,000 population). In Wiltshire and Cumbria, GPs predominantly provided advice on tick removal, whilst Welsh GPs mostly advised patients on tick bite prevention. Focusing on Cumbria during 2011–2013, 72.5% of GPs removed ticks from patients (incidence of 101 consultations per 100,000 population), and more GPs diagnosed LB based on clinical features than laboratory‐confirmed diagnoses. To date, this is the first study to investigate the incidence of tick bite consultations and LB in England and Wales
    • 

    corecore