169 research outputs found

    Contamination control concepts for space station customer servicing

    Get PDF
    The customer servicing operations envisioned for the space station, which include instrument repair, orbital replacement unit (ORU) changeout, and fluid replenishment for free-flying and attached payloads, are expected to create requirements for a unique contamination control subsystem for the customer servicing facility (CSF). Both the core space station and the CSF users present unique requirements/sensitivities, not all of which are currently defined with common criteria. Preliminary results from an assessment of the effects of the CSF-induced contamination environment are reported. Strategies for a comprehensive contamination control approach and a description of specific hardware devices and their applicability are discussed

    BASP1 interacts with estrogen receptor α and modifies the tamoxifen response

    Get PDF
    AbstractTamoxifen binds to oestrogen receptor α (ERα) to elicit distinct responses that vary by cell/tissue type and status, but the factors that determine these differential effects are unknown. Here we report that the transcriptional corepressor BASP1 interacts with ERα and in breast cancer cells, this interaction is enhanced by tamoxifen. We find that BASP1 acts as a major selectivity factor in the transcriptional response of breast cancer cells to tamoxifen. In all, 40% of the genes that are regulated by tamoxifen in breast cancer cells are BASP1 dependent, including several genes that are associated with tamoxifen resistance. BASP1 elicits tumour-suppressor activity in breast cancer cells and enhances the antitumourigenic effects of tamoxifen treatment. Moreover, BASP1 is expressed in breast cancer tissue and is associated with increased patient survival. Our data have identified BASP1 as an ERα cofactor that has a central role in the transcriptional and antitumourigenic effects of tamoxifen.</jats:p

    A massive, energetic model for the luminous transitional Type Ib/IIb SN 2020cpg

    Get PDF
    Using a combined spectral and light-curve modelling approach, we fit a massive and energetic explosion model to the luminous Type Ib/IIb SN 2020cpg. This model has an ejected mass of ∼(7 ± 2) M⊙ with a final explosion energy of ∼(6 ± 1) × 1051 erg with MNi = 0.27 ± 0.05 M⊙. The early spectra are hot and blue with weak He I lines, and a complicated Hα region suggested to be a multicomponent feature. Modelling the spectra required ∼0.08 M⊙ of H at velocities >11 000 km s−1 and a total He mass of ∼1.0 M⊙ at velocities >9500 km s−1 above CO-rich ejecta. This model has a ratio of kinetic energy and ejected mass of 0.85+0.5−0.3 foe M⊙−1. The high luminosity and explosion energy results in a broadened Hα line that is blended with Si II, C II, and He I, which led to the initial classification of SN 2020cpg as a Type Ib. We instead classify SN 2020cpg as a bright transitional event between the Type Ib and Type IIb classes. Comparing our model parameters to stellar evolution models, a progenitor mass of 25–30 M⊙, i.e. stripped of most of the hydrogen shell and of some of the helium shell prior to collapse produces a He core of comparable mass. The excess 56Ni production in SN 2020cpg as compared to objects of similar ejected mass may suggest evidence of additional energy sources such as a failed GRB or weak magnetar energy injection, or a smaller remnant mass

    Impact of error analysis on the composition of the outer crust of a neutron star

    Get PDF
    By means of bootstrap technique, we perform a full error analysis on the Duflo-Zucker mass model. We illustrate the impact of such study on the predicted chemical composition of the outer crust of a non-accreting neutron star. We define an existence probability for each nuclear species as a function of the depth of the crust. We observe that, due to statistical uncertainties, instead of having a well defined transition between two successive layers, we have a mixture of two species.Comment: Presented at INPC 201

    #Bieber + #Blast = #BieberBlast: Early Prediction of Popular Hashtag Compounds

    Full text link
    Compounding of natural language units is a very common phenomena. In this paper, we show, for the first time, that Twitter hashtags which, could be considered as correlates of such linguistic units, undergo compounding. We identify reasons for this compounding and propose a prediction model that can identify with 77.07% accuracy if a pair of hashtags compounding in the near future (i.e., 2 months after compounding) shall become popular. At longer times T = 6, 10 months the accuracies are 77.52% and 79.13% respectively. This technique has strong implications to trending hashtag recommendation since newly formed hashtag compounds can be recommended early, even before the compounding has taken place. Further, humans can predict compounds with an overall accuracy of only 48.7% (treated as baseline). Notably, while humans can discriminate the relatively easier cases, the automatic framework is successful in classifying the relatively harder cases.Comment: 14 pages, 4 figures, 9 tables, published in CSCW (Computer-Supported Cooperative Work and Social Computing) 2016. in Proceedings of 19th ACM conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2016

    Lightcurve and spectral modelling of the Type IIb SN 2020acat. Evidence for a strong Ni bubble effect on the diffusion time

    Full text link
    We use the light curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed Type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, the radial mixing and expansion of the radioactive material, and the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and lightcurves of SN 2020acat is found for a model with an initial mass of 17 solar masses, strong radial mixing and expansion of the radioactive material, and a 0.1 solar mass hydrogen envelope with a low hydrogen mass-fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and the nebular phase. These "Ni bubbles" are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion phase lightcurve is sensitive to the expansion of the "Ni bubbles", as the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous lightcurve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. It should be emphasized, though, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of Type IIb SN progenitors, and a single star origin can not be excluded.Comment: Accepted for publication by Astronomy and Astrophysic

    Flat-topped NIR profiles originating from an unmixed helium shell in the Type IIb SN 2020acat

    Get PDF
    The Near Infrared (NIR) spectra of the Type IIb supernova (SN IIb) SN 2020acat, obtained at various times throughout the optical follow-up campaign, are presented here. The dominant He i 1.0830 μm and 2.0581 μm features are seen to develop flat-topped P-Cygni profiles as the NIR spectra evolve towards the nebular phase. The nature of the NIR helium peaks imply that there was a lack of mixing between the helium shell and the heavier inner ejecta in SN 2020acat. Analysis of the flat-top features showed that the boundary of the lower velocity of the helium shell was ∼3 − 4 × 103 km s−1. The NIR spectra of SN 2020acat were compared to both SN 2008ax and SN 2011dh to determine the uniqueness of the flat-topped helium features. While SN 2011dh lacked a flat-topped NIR helium profile, SN 2008ax displayed NIR helium features that were very similar to those seen in SN 2020acat, suggesting that the flat-topped feature is not unique to SN 2020acat and may be the product of the progenitors structure
    • …
    corecore