33 research outputs found

    Sound-driven modulation of sub- and suprathreshold activity in mouse primary visual cortex

    Get PDF
    Integration of multimodal information is essential for the integrative response of the brain and is thought to be accomplished mostly in sensory association areas. However, available evidences in humans and monkeys indicate that this process begins already in primary sensory cortices. However, how cross-modal synaptic integration occurs in vivo along cortical microcircuitries remains to be investigated. Primary sensory cortices of rodents are well-suited to address this issue as they have a well-known anatomy and synaptic physiology. Here we quantified how acoustic stimulation (white noise, 50 ms duration) affects spontaneous and sensory-driven activity of pyramidal neurons in different layers of primary visual cortex by intrinsic signal imaging-targeted in vivo whole-cell recordings in lightly anesthetized and awake, head-fixed mice. Acoustic stimuli reliably evoked hyperpolarizations -lasting about 200-300 ms- in layer 2-3 and 6 neurons, but not in the main thalamorecipient lamina, layer 4. We found depolarizing responses to sound only in layer 5 (about 1/4 of recorded neurons), whereas the remaining cells exhibited no response or hyperpolarizations. To explore the synaptic nature of sound-driven hyperpolarizations in supragranular pyramids, we measured the inhibitory and excitatory conductances elicited by sound. Hyperpolarizations were due to the combined effect of activation of inhibitory conductances along with a withdrawal of excitatory ones. In agreement with this, sound-driven hyperpolarizations were significantly reduced by intracellular perfusion with a cesium-based solution containing 1 mM picrotoxin to block GABA-B and GABA-A receptors, respectively (-3,3 ± 0,4 mV vs -1,1 ± 0,3 mV, t-test, p<0,001). We next quantified the impact of sound-driven inhibition on visual responsiveness by coupling flashed or moving light bars with white noise. Sub- and suprathreshold responses were significantly reduced in the case of bimodal stimulation compared to the pure visual modality (of about 30 and 50%, respectively, paired statistics, p<0.05). Finally, transection experiments guided by intrinsic signal imaging indicated that auditory-driven synaptic inputs onto visual cortical neurons persisted despite inactivation of horizontal connections between primary visual and auditory cortices. Taken together, our findings illustrate a simple scheme by which spontaneous and evoked activity in a retinotopic column of the mouse primary visual cortex can be shaped by the acoustic external environment in a layer-specific manner

    Tau-Driven Neuronal and Neurotrophic Dysfunction in a Mouse Model of Early Tauopathy.

    Get PDF
    Tauopathies are neurodegenerative diseases characterized by intraneuronal inclusions of hyperphosphorylated tau protein and abnormal expression of brain-derived neurotrophic factor (BDNF), a key modulator of neuronal survival and function. The severity of both these pathological hallmarks correlate with the degree of cognitive impairment in patients. However, how tau pathology specifically modifies BDNF signaling and affects neuronal function during early prodromal stages of tauopathy remains unclear. Here, we report that the mild tauopathy developing in retinal ganglion cells (RGCs) of the P301S tau transgenic (P301S) mouse induces functional retinal changes by disrupting BDNF signaling via the TrkB receptor. In adult P301S mice, the physiological visual response of RGCs to pattern light stimuli and retinal acuity decline significantly. As a consequence, the activity-dependent secretion of BDNF in the vitreous is impaired in P301S mice. Further, in P301S retinas, TrkB receptors are selectively upregulated, but uncoupled from downstream extracellular signal-regulated kinase (ERK) 1/2 signaling. We also show that the impairment of TrkB signaling is triggered by tau pathology and mediates the tau-induced dysfunction of visual response. Overall our results identify a neurotrophin-mediated mechanism by which tau induces neuronal dysfunction during prodromal stages of tauopathy and define tau-driven pathophysiological changes of potential value to support early diagnosis and informed therapeutic decisions. SIGNIFICANCE STATEMENT: This work highlights the potential molecular mechanisms by which initial tauopathy induces neuronal dysfunction. Combining clinically used electrophysiological techniques (i.e., electroretinography) and molecular analyses, this work shows that in a relevant model of early tauopathy, the retina of the P301S mutant human tau transgenic mouse, mild tau pathology results in functional changes of neuronal activity, likely due to selective impairment of brain-derived neurotrophic factor signaling via its receptor, TrkB. These findings may have important translational implications for early diagnosis in a subset of Alzheimer's disease patients with early visual symptoms and emphasize the need to clarify the pathophysiological changes associated with distinct tauopathy stages to support informed therapeutic decisions and guide drug discovery.journal articleresearch support, non-u.s. gov't2016 Feb 17importe

    Experience-dependent plasticity of visual cortical microcircuits

    Get PDF
    The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. This review recapitulates the main recent findings in the field using mainly the primary visual cortex as a model system to highlight the more important questions and physiological principles (such as the role of non-competitive mechanisms, the role of inhibition in excitatory cell plasticity, the functional importance of spine and axonal plasticity on a microscale level). I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions. (C) 2014 The Author. Published by Elsevier Ltd. on behalf of IBRO

    Advantages, Pitfalls, and Developments of All Optical Interrogation Strategies of Microcircuits in vivo

    No full text
    The holy grail for every neurophysiologist is to conclude a causal relationship between an elementary behaviour and the function of a specific brain area or circuit. Our effort to map elementary behaviours to specific brain loci and to further manipulate neural activity while observing the alterations in behaviour is in essence the goal for neuroscientists. Recent advancements in the area of experimental brain imaging in the form of longer wavelength near infrared (NIR) pulsed lasers with the development of highly efficient optogenetic actuators and reporters of neural activity, has endowed us with unprecedented resolution in spatiotemporal precision both in imaging neural activity as well as manipulating it with multiphoton microscopy. This readily available toolbox has introduced a so called all-optical physiology and interrogation of circuits and has opened new horizons when it comes to precisely, fast and non-invasively map and manipulate anatomically, molecularly or functionally identified mesoscopic brain circuits. The purpose of this review is to describe the advantages and possible pitfalls of all-optical approaches in system neuroscience, where by all-optical we mean use of multiphoton microscopy to image the functional response of neuron(s) in the network so to attain flexible choice of the cells to be also optogenetically photostimulated by holography, in absence of electrophysiology. Spatio-temporal constraints will be compared toward the classical reference of electrophysiology methods. When appropriate, in relation to current limitations of current optical approaches, we will make reference to latest works aimed to overcome these limitations, in order to highlight the most recent developments. We will also provide examples of types of experiments uniquely approachable all-optically. Finally, although mechanically non-invasive, all-optical electrophysiology exhibits potential off-target effects which can ambiguate and complicate the interpretation of the results. In summary, this review is an effort to exemplify how an all-optical experiment can be designed, conducted and interpreted from the point of view of the integrative neurophysiologist

    Preserved Excitatory-Inhibitory Balance of Cortical Synaptic Inputs following Deprived Eye Stimulation after a Saturating Period of Monocular Deprivation in Rats

    Get PDF
    Monocular deprivation (MD) during development leads to a dramatic loss of responsiveness through the deprived eye in primary visual cortical neurons, and to degraded spatial vision (amblyopia) in all species tested so far, including rodents. Such loss of responsiveness is accompanied since the beginning by a decreased excitatory drive from the thalamo-cortical inputs. However, in the thalamorecipient layer 4, inhibitory interneurons are initially unaffected by MD and their synapses onto pyramidal cells potentiate. It remains controversial whether ocular dominance plasticity similarly or differentially affects the excitatory and inhibitory synaptic conductances driven by visual stimulation of the deprived eye and impinging onto visual cortical pyramids, after a saturating period of MD. To address this issue, we isolated visually-driven excitatory and inhibitory conductances by in vivo whole-cell recordings from layer 4 regular-spiking neurons in the primary visual cortex (V1) of juvenile rats. We found that a saturating period of MD comparably reduced visually-driven excitatory and inhibitory conductances driven by visual stimulation of the deprived eye. Also, the excitatory and inhibitory conductances underlying the synaptic responses driven by the ipsilateral, left open eye were similarly potentiated compared to controls. Multiunit recordings in layer 4 followed by spike sorting indicated that the suprathreshold loss of responsiveness and the MD-driven ocular preference shifts were similar for narrow spiking, putative inhibitory neurons and broad spiking, putative excitatory neurons. Thus, by the time the plastic response has reached a plateau, inhibitory circuits adjust to preserve the normal balance between excitation and inhibition in the cortical network of the main thalamorecipient layer

    In vivo spontaneous activity and coital-evoked inhibition of mouse accessory olfactory bulb output neurons

    No full text
    Little is known about estrous effects on brain microcircuits. We examined the accessory olfactory bulb (AOB) in vivo, in anesthetized naturally cycling females, as model microcircuit receiving coital somatosensory information. Whole-cell recordings demonstrate that output neurons are relatively hyperpolarized in estrus and unexpectedly fire high frequency bursts of action potentials. To mimic coitus, a calibrated artificial vagino-cervical stimulation (aVCS) protocol was devised. aVCS evoked stimulus-locked local field responses in the interneuron layer independent of estrous stage. The response is sensitive to α1-adrenergic receptor blockade, as expected since aVCS increases norepinephrine release in AOB. Intriguingly, only in estrus does aVCS inhibit AOB spike output. Estrus-specific output reduction coincides with prolonged aVCS activation of inhibitory interneurons. Accordingly, in estrus the AOB microcircuit sets the stage for coital stimulation to inhibit the output neurons, possibly via high frequency bursting-dependent enhancement of reciprocal synapse efficacy between inter- and output neurons

    Visual stimulation with blue wavelength light drives V1 effectively eliminating stray light contamination during two-photon calcium imaging

    No full text
    Background: Brain visual circuits are often studied in vivo by imaging Ca2+ indicators with green-shifted emission spectra. Polychromatic white visual stimuli have a spectrum that partially overlaps indicators® emission spectra, resulting in significant contamination of calcium signals. New method: To overcome light contamination problems we choose blue visual stimuli, having a spectral composition not overlapping with Ca2+ indicator®s emission spectrum. To compare visual responsiveness to blue and white stimuli we used electrophysiology (visual evoked potentials –VEPs) and 3D acousto-optic two-photon (2P) population Ca2+ imaging in mouse primary visual cortex (V1). Results: VEPs in response to blue and white stimuli had comparable peak amplitudes and latencies. Ca2+ imaging in a Thy1 GP4.3 line revealed that the populations of neurons responding to blue and white stimuli were largely overlapping, that their responses had similar amplitudes, and that functional response properties such as orientation and direction selectivities were also comparable. Comparison with existing methods: Masking or shielding the microscope are often used to minimize the contamination of Ca2+ signal by white light, but they are time consuming, bulky and thus can limit experimental design, particularly in the more and more frequently used awake set-up. Blue stimuli not interfering with imaging allow to omit shielding. Conclusions: Together, our results show that the selected blue light stimuli evoke responses comparable to those evoked by white stimuli in mouse V1. This will make complex designs of imaging experiments in behavioral set-ups easier, and facilitate the combination of Ca2+ imaging with electrophysiology and optogenetics

    A saturating period of MD reduces both excitatory and inhibitory responses to closed eye stimulation.

    No full text
    <p><b>A</b>. Examples of excitatory (g<sub>E</sub>, red) and inhibitory (g<sub>I</sub>, green) responses of 4RSNs (left: normal; right: MD) upon stimulation with optimally oriented light bars. The total membrane conductance (G<sub>tot</sub>) is shown in blue and the V<sub>m</sub> response in absence of current injection is in black (top traces). Dotted lines: 0 nS. Gray shadow: 95% confidence intervals of the g<sub>E</sub> and g<sub>I</sub> estimates obtained by bootstrap analysis. <b>B</b>. Amplitudes of the visually-driven g<sub>E</sub> (green) and g<sub>I</sub> (red) responses in normal (open boxes) and MD (dashed boxes) rats. MD reduced both excitatory and inhibitory conductances upon contralateral eye (closed in MD rats) stimulation and increased both excitatory and inhibitory conductances upon ipsilateral eye (open in MD rats) stimulation (Mann-Whitney Rank Sum tests, p<0.05). <b>C</b>. The excitatory-inhibitory balance of visually-driven responses, expressed by the K<sub>EI</sub> index, was not affected by MD (dashed boxes vs open boxes) for both contralateral and ipsilateral responses (Mann-Whitney Rank Sum tests, p>0.7).</p
    corecore