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Abstract—The recent decade testifieda tremendous increase

in our knowledgeonhowcell-type-specificmicrocircuitspro-

cess sensory information in the neocortex and on how such

circuitry reacts tomanipulations of the sensory environment.

Experience-dependent plasticity has now been investigated

with techniques endowed with cell resolution during both

postnatal development and in adult animals. This review

recapitulates the main recent findings in the field using

mainly the primary visual cortex as a model system to high-

light the more important questions and physiological princi-

ples (such as the role of non-competitive mechanisms, the

role of inhibition in excitatory cell plasticity, the functional

importance of spine and axonal plasticity on a microscale

level). I will also discuss on which scientific problems the

debate and controversies are more pronounced. New tech-

nologies that allow to perturbate cell-type-specific subcir-

cuits will certainly shine new light in the years to come at

least on some of the still open questions. � 2014 The

Author. Published by Elsevier Ltd. on behalf of IBRO. This

is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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BASIC FACTS ABOUT EXPERIENCE-DEPENDENT
CORTICAL PLASTICITY AND PURPOSE

OF THIS REVIEW

The aim of this manuscript is to review the current status

of knowledge on how the various cell types composing the

microcircuits in mammalian sensory cortices react to

changes of the sensory experience during development

and when animals are adult. So, whenever possible, the

analysis will be at the level of cell-type-specific

microcircuits and will be focused on the synaptic

mechanisms rather than on molecular mechanisms.

This is because just few of the many studies dealing

with the molecular mechanisms of experience-

dependent plasticity did address the layer- or cell-type

specificity of the effects of such molecular manipulations.

Experience-dependent plasticity is usually studied in

two model primary sensory cortices in rodents, mostly

due to the detailed knowledge of the functional anatomy

and physiology of these two areas in rodents: the

primary visual cortex (V1) and the whisker

representation in the primary somatosensory cortex

(barrel cortex, S1). In this review we will focus mostly on

studies of the effects of a classical paradigm of

experience-dependent plasticity: monocular deprivation

(MD) effects in V1 circuits. This is because the effects of

MD in V1 are phylogenetically conserved in all mammals

tested so far (Berardi et al., 2003). However, when perti-

nent, works in both S1 and primary auditory cortex (A1) will

be referred to with the purpose to illustrate the general

value of the physiological principles revealed by studies

on experience-dependent plasticity in V1.

Usually experience-dependent plasticity in cortical

circuits is triggered by creating an imbalance of the level

or of the quality of electrical activity between two (or

more) different sets of inputs converging onto the same
ons.org/licenses/by-nc-nd/3.0/).
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class of neurons. This is usually realized by studying the

effects of depriving one sensory input pathway, for

example by the classical paradigms of MD in V1, by

whisker trimming in S1, or by exposing animals to

restricted sound frequencies in A1. The plastic response

observed when the manipulation is done in juvenile

animals usually consists in a fairly rapid loss of

responsiveness to the deprived input(s), followed by a

slower increase of responsiveness to the spared

input(s). Such neuronal plasticity in V1 is accompanied

by behaviorally detectable consequences. In the visual

system, a loss of spatial vision through the deprived eye

(amblyopia) has been described in all species studied

so far as a consequence of MD during the critical period

(Berardi et al., 2000; Kiorpes, 2006). However, it is not

clear whether all visual deficits of amblyopic animals

can be attributable to ‘‘simple’’ loss of responsiveness of

V1 neurons (El-Shamayleh et al., 2010). Other factors,

such as degraded tuning of V1 neurons for spatio-tempo-

ral characteristics of visual stimuli (Kiorpes et al., 1998),

or even malfunctions in higher visual association area-

s(El-Shamayleh et al., 2010), might be involved. With

respect to this it should be emphasized that loss of vision

has usually a more dramatic impact on V1 circuits com-

pared to whisker deprivations in S1, at least when the shift

of preference between the spared and deprived input

responses is quantified in neurons receiving both inputs

(Fox, 1992; Maffei et al., 1992). This might simply relate

to the fact that for the visual system losing inputs from

one eye is a more dramatic event compared to losing

inputs from one whiskers because: (a) simply said, there

are many whiskers and only two eyes; (b) whiskers are

specialized hairs that continuously fall off and are

replaced by new ones during animal’s life.

Importantly, both visual and whisker deprivations have

behavioral consequences in rodents: loss of spatial vision

after MD (Prusky et al., 2000; Prusky and Douglas, 2003;

Pizzorusso et al., 2006); altered exploratory strategies

e.g. during the gap crossing tests after whisker depriva-

tion – (Carvell and Simons, 1996; Celikel and Sakmann,

2007; Papaioannou et al., 2013).

An imbalance between different inputs sufficient to

trigger plasticity can also be created by overstimulating

one sensory path (e.g. after perceptual learning) and by

reducing stimulation of the other channels (e.g. raising

animals in environments where they are allowed to see

only one orientation – ‘‘stripe’’ rearing – in the case of V1

(Blakemore and Cooper, 1970; Stryker et al., 1978;

Sengpiel et al., 1999; Kreile et al., 2011), or by overexpos-

ing animals to certain sound frequencies to see the

changes of the tonotopic map in A1 – e.g. (Chang and

Merzenich, 2003; de Villers-Sidani et al., 2008)). Also in

such cases, there is an expansion of the cortical represen-

tation of the overstimulated stimulus features that occurs at

the expense of the representation of the remaining ones.
NOTES ON THE CONCEPT OF CRITICAL
PERIOD

Most of the works on the circuitry basis of cortical sensory

plasticity are done on developing animals, in line with the
pioneering work of Hubel and Wiesel, that linked

experience-dependent plasticity to postnatal

development (Hubel and Wiesel, 1962; Wiesel and

Hubel, 1965; Hubel et al., 1977). In all three cortices

(A1, V1 and S1) it is possible to define the existence of

‘‘critical periods’’, that is, temporal windows of heightened

plasticity, during which cortical circuits are particularly

sensitive to manipulations of the sensory environment.

There is no ‘‘absolute’’ critical period even in a given cor-

tex, and the reason is due to the fact that the concept of

critical period itself is intimately and causally related to

the development of specific sets of connections. Indeed,

in all sensory cortices there is a functional maturation of

the main functional response properties of neurons during

postnatal development, which is probably caused by the

anatomo-functional maturation and fine-tuning of different

sets of input connections. Hence, when we perturb the

development of the cortex by manipulating certain attri-

butes of the sensory environment (e.g. in the V1 we can

manipulate separately the sets of orientation to which

the animal is exposed by stripe rearing, or we can selec-

tively manipulating binocularity by means of MD or stra-

bismus), we get different critical periods because the

sets of connections involved are probably developing

within different time frames. For example, in the visual

system, the development of retinotopic maps (Cang

et al., 2005, 2008), the development of orientation selec-

tivity (Godecke et al., 1997; Kreile et al., 2011; Kuhlman

et al., 2011) and that of binocularity (Gordon and

Stryker, 1996) occur in different time frames. Correspond-

ingly, the temporal windows for manipulating the respec-

tive cortical maps are different. Similarly, in A1, the

critical period for the establishment of the tonotopic map

(de Villers-Sidani et al., 2007) precedes that for the sweep

directional selectivity (Insanally et al., 2009).

Finally, the very same sensory manipulation affects

different sets of connections when performed at different

time points during postnatal development in relation to

which connections were maturing within a certain time

frame. Studies on the plastic response of S1 neurons in

response to univibrissa rearing (a classical protocol

where only one whisker is kept intact and all the

remaining ones are trimmed) are particularly telling with

this regard. Indeed, there is an early critical period for

the effects of univibrissa rearing in layer 4 (the barrel

itself), which correlates also with an anatomical

expansion of the cortical representation of the spared

input, as described by the pioneering study of Kevin Fox

(Fox, 1992). Thus, this early critical period in layer 4 might

be attributable to the refinement of thalamocortical inner-

vation during the first postnatal week. Univibrissa rearing

still elicits a plastic response in overlying layer 2/3 long

after the first postnatal week (Glazewski and Fox,

1996). Of relevance, further occlusion experiments attrib-

uted this more persistent plasticity of supragranular layers

to a continued capability of the layer 4-to-layer 2/3 con-

nections to undergo plastic changes (Allen et al., 2003),

after the initial formation of the thalamocortical map.

Thus, there is no ‘‘absolute’’ critical period, as the

definition of critical period depends on the area, on the

specific connections studied and, at least partially in
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causal relation to this, on the specific functional response

property under investigation. Similarly, there is no

absolute ‘‘closure’’ of the critical period, as a certain

degree of susceptibility to sensory manipulations

persists into adulthood. This adult cortical plasticity can

be considered as a lifelong ‘‘tail’’ of development, albeit

it probably serves completely different functions with

respect to the plasticity observed during postnatal

development.

Another common characteristic of cortical plasticity is

that cortical circuits remain functionally immature when

animals are deprived of structured (better said,

patterned) sensory activity. This is particularly

detrimental for the functional development of cortical

circuits. The main functional sensory maps seem to

appear also in absence of patterned visual activity: for

example, orientation selectivity maps in carnivores

emerge clearly also in dark reared, developing animals

(Crair et al., 1998), and embryonic ocular dominance col-

umns form even in enucleated ferrets (Crowley and Katz,

2000). These data exclude the role of visually driven activ-

ity in the basic structure of sensory maps in V1, but do not

exclude the role of the patterned, spontaneous activity

present intrinsically within the cortex (Chiu and Weliky,

2001) or coming from the deafferented thalamus in the

case of enucleated animals (Weliky and Katz, 1999). On

the other side, after eye opening, exposure to a patterned

visual activity seems important to promote and maintain

the functional maturation of the main response properties

of V1 neurons (Crair et al., 1998). Visual responses in

dark reared animal remain sluggish (Pizzorusso et al.,

1997) and often scarcely tuned for stimulus orientation

and angular size ((Freeman et al., 1981; Benevento

et al., 1992; Fagiolini et al., 1994; Gianfranceschi et al.,

2003) but see (Rochefort et al., 2011)). In addition, visual

acuity –whose increase is a signature of the functional

development of V1-remains low and does not attain adult

levels as a consequence of dark rearing in both rats

(Pizzorusso et al., 2006) and mice (Gianfranceschi

et al., 2003). So, dark rearing delays the functional matu-

ration of V1. Similarly, exposure to tonotopically non-

structured acoustic stimulation (white noise, containing

all frequencies) retards auditory cortical development in

rats (Chang and Merzenich, 2003). Such an effect can

also be spatially confined: for example, band-limited noise

exposure during early development prevents the matura-

tion of the noise engaged A1 sector in rats (de Villers-

Sidani et al., 2008).

How does sensory activity impact on (and eventually

strengthen) the initially hardwired cortical connectivity –

that determines the basic tuning of V1 neurons so to

promote maintenance and maturation of such tuning

properties? By combining functional two-photon imaging

with in vitro assessment of synaptic connectivity, the

group of Mrsic-Flögel found that in V1 the basic tuning

properties are already present before eye opening (Ko

et al., 2013) and that exposure to patterned vision selec-

tively strengthened horizontal connections between simi-

larly tuned cortical neurons.

This process of postnatal functional maturation –

whose signature in V1 is the increase of visual
acuity– is paralleled by a decline to sensitivity to MD

effects in all mammals tested so far (Berardi et al.,

2000). In line with a role of visually driven activity to

‘‘close’’ the critical period, it has been shown that dark

rearing also prolongs the critical period in cats (Mower,

1991), rats (Pizzorusso et al., 2006) and mice

(Gianfranceschi et al., 2003), meaning that V1 neurons

remain susceptible to MD effects despite animals being

somatically adult. A note of caution should then be put

on this notion of ‘‘critical period prolongation’’ as a conse-

quence of dark rearing. Indeed, a legitimate concern is

that to state this one should proof that the mechanisms

and the plastic modifications induced by MD after dark

rearing are the same as those caused by MD in juvenile,

light-reared animals. Indeed, the possibility cannot be

excluded that MD might cause qualitatively and quantita-

tively different effects on the abnormal V1 circuitry that

results from dark rearing. For example, visual deprivation

perturbs key aspects of retinal functional development

(Tian and Copenhagen, 2001), such as the segregation

of retinal ganglion cells in ON and OFF subtypes (Tian

and Copenhagen, 2003), not to mention the effect on

retino-geniculate synapses (Hooks and Chen, 2006,

2008).
PHYSIOLOGY OF CORTICAL MICROCIRCUITS
IN VIVO

The mammalian neocortex is composed by

morphologically and molecularly distinct types of

excitatory and inhibitory cells, whose input and output

connectivity is both layer- and cell-type specific. Once

again, Hubel and Wiesel’s view that specific sets of

connections onto a given cell type are essential

determinants of its receptive field properties remains

inspiring and guides modern neurobiological research in

the field of cortical microcircuits. Such layer- and cell-

type-specific connectivity of cortical neurons is thought

to be reflected in the different functional response

properties of the excitatory cortical neurons located in

the various laminae in both V1 (Martinez et al., 2002,

2005; Medini, 2011a), S1 (de Kock et al., 2007; de Kock

and Sakmann, 2009) and A1 (Sakata and Harris, 2009).

In general, suprathreshold responsiveness is highest in

layer 5 pyramids, the main source of subcortical output

in cortical circuits, and is lowest in the ‘‘integrative’’ layer

2/3, which sends inputs to layer 5 (Burkhalter, 1989). In

some cases, functional response properties are similar

at the level of synaptic inputs between pyramids of differ-

ent layers, but become different at the level of spike out-

puts – e.g. when comparing layer 4 and layer 2/3

pyramids (Medini, 2011a), indicating that layer-specific

differences in spike responses might be generated by dif-

ferences in the action potential generating mechanism.

Importantly, the sparse responsiveness of layer 2/3 pyra-

mids, which diffusely innervate layer 5 (Burkhalter, 1989),

raises doubts on the idea that layer 2/3 pyramids repre-

sent the dominant source of functional inputs to layer 5

output pyramids, raising the possibility that the latter

might receive direct thalamic inputs. This possibility was

indeed suggested by a limited number of previous
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recordings in V1 (Martin and Whitteridge, 1984) and by

more recent anatomical and electrophysiological work in

S1 (Constantinople and Bruno, 2013). Layer 5 contains

two morphologically distinct cell types in all sensory

cortices, based on the presence or absence of a tufted

apical dendrite (layer 5 thick-tufted and slender-tufted

pyramids), which also project to different subcortical ana-

tomical targets as originally found by (Kasper et al., 1994)

– reviewed in (Molnar and Cheung, 2006). Interestingly,

data in S1 indicate that the two types of layer 5 pyramids

have different sensory responsiveness (de Kock et al.,

2007; de Kock and Sakmann, 2009) and that slender pyr-

amids preferentially encode whisker movements in S1 of

awake, whisking animals (de Kock and Sakmann, 2009).

Also, recent data in V1 indicate that layer 5 contains the

two neuronal populations that display the highest and low-

est binocularity along the entire cortical column (thick- and

slender-pyramids, respectively) (Medini, 2011b). Simi-

larly, there are data indicating the coexistence of highly

orientation selective (Martinez et al., 2002) and very

scarcely orientation selective pyramids in layer 5 of V1,

the latter being cortico-pontine pyramids (Klein et al.,

1986). Taken together, these data indicate that sensory

representation is highly layer- and cell-type specific along

the vertical cortical circuits formed by excitatory pyramids,

and that such differences – at least in some cases – might

originate from the conversion of synaptic to spike

responses.

Of relevance, sensory responsiveness is often found

to be different in inhibitory interneurons compared to

neighboring pyramids. In the majority of studies the

major class of inhibitory cells, the soma-targeting, fast-

spiking parvalbumin interneurons, have been found to

have broader orientation selectivity compared to

pyramids in V1 (Sohya et al., 2007; Kerlin et al., 2010;

Kuhlman et al., 2011) – albeit some are orientation selec-

tive (Runyan et al., 2010), probably in relation with their

different dendritic geometry (Runyan and Sur, 2013). Par-

valbumin-positive interneurons are also found to be more

binocularly driven compared to neighboring pyramids in

mouse V1 (Yazaki-Sugiyama et al., 2009; Kameyama

et al., 2010). In S1, putative fast spiking interneurons also

showed broader selectivity for the direction of whisker

movement (Swadlow, 1989). In A1, despite previous work

reported scarce frequency tuning of putative inhibitory

neurons in A1 (Atencio and Schreiner, 2008), a recent

study used an optogenetic tag to selectively record from

parvalbumin-positive interneurons and reported similar

frequency tuning for parvalbumin-positive cells and pyra-

midal neurons (Moore and Wehr, 2013) – but see (Li

et al., 2014b). Interestingly, the prototype class of den-

dritic-targeting interneurons, the somatostatin-positive

interneurons, have functional response properties and

electrophysiological characteristics (e.g. a regular spiking

phenotype) that are more similar to those of pyramidal

neurons compared to parvalbumin-positive cells in both

V1 (Ma et al., 2010) and A1 (Li et al., 2014b). Noticeably,

a striking difference of sensory responsiveness of

somatostatin-positive interneurons compared to all neigh-

boring cell types has been found in S1: deflection of the

principal whisker determines depolarizations in both
excitatory pyramids and in parvalbumin-positive interneu-

rons, but reliably evokes hyperpolarizations in somato-

statin-positive cells (Gentet et al., 2012). This indicates

that when the tactile input arrives, the inhibitory gate pro-

vided by somatostatin-positive interneurons on the den-

drites of excitatory cells – which is functionally relevant

in vivo (Murayama et al., 2009) – is removed, possibly

allowing more efficient processing of sensory information.

Recent works in V1 tried to dissect a differential role of the

two interneuron types in modulating orientation selectivity,

a fundamental visual receptive field properties of cortical

origin. Parvalbumin-positive cells were found to modulate

the responsiveness of pyramidal neurons without affect-

ing the orientation tuning (Atallah et al., 2012), whereas

somatostatin-positive neurons have principally a subtrac-

tive effect that modifies the orientation tuning ((Wilson

et al., 2012) – but see (Lee et al., 2012)). Taken together,

these data indicate that sensory input representation is

cell-type specific in the different inhibitory cell types of cor-

tical microcircuits and that this differentially impacts the

spike output of the projection, excitatory pyramidal cells.
LAYER- AND CELL-TYPE-SPECIFIC
PLASTICITY IN COLUMNAR, EXCITATORY

CIRCUITS

Until recent times, not somuch attention has been devoted

to understand whether experience-dependent plasticity is

layer- and cell-type specific in cortical circuits. As we will

see in the next sections, this is probably due to the fact

that most of the efforts were focused on understanding

the general physiological principles underlying cortical

map plasticity (e.g. role of input potentiation and

depression, hebbian vs. homeostatic components of

plasticity, role of structural changes in functional

plasticity), rather than how the cortical circuitry was

changed at the level of its distinct cellular components.

However, the very same biophysical mechanisms and

the differential connectivity that render sensory

responsiveness different in the various cortical cell types

could also account for different coincidence detection

capabilities of the various cell types that may in turn

result in differential experience-dependent plasticity.

After the initial observations of Hubel and Wiesel on

plasticity of ocular dominance maps traced by

transneuronal labeling of the thalamocortical radiation in

V1 for example in monkeys (Hubel et al., 1977), single

axon reconstructions showed that shrinkage of deprived

axons occurs earlier and extension of open eye terminals

occurs later (Friedlander et al., 1991; Antonini and

Stryker, 1996) However, reconstructions of single thala-

mocortical axons showed that morphological plasticity is

rapid in cat V1 and accompany functional plasticity within

few days (Antonini and Stryker, 1993b). Similar results

have more recently been obtained in mice (Coleman

et al., 2010). These works were done after a brief period

(3–4 days) of MD at the peak of the critical period of the

two species.

Trachtenberg and Stryker however found that an even

shorter period of MD (24 h) in kittens is enough to reduce

responsiveness to the deprived eye in the extragranular
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layers, whereas normal binocularity in layer IV was

preserved (Trachtenberg et al., 2000). These data indi-

cated that in cats thalamocortical rearrangements in layer

4 are instructed by earlier changes in the overlying supra-

granular layers. Conversely, layer 4 is affected since the

very beginning after MD in rodents. Indeed, a brief MD

(2 days) changes the ocular dominance of the synaptic

responses of V1 in a similar way in layer 4 pyramids

and in layer 2/3 pyramids (Medini, 2011b). In line with this

report, a pharmacological technique designed to isolate

thalamic inputs in V1 also showed that the ocular domi-

nance shift is already expressed at the level of thalamo-

cortical synaptic transmission after a brief MD episode

(Khibnik et al., 2010). In interpreting these results, one

should take into account the different functional anatomy

of the thalamocortical radiation that forms ocular domi-

nance columns in cats but not in rodents (Antonini et al.,

1999). In other words, the two inputs remain segregated

in the first thalamocortical synapse in layer 4 in cats

whereas they are already intermingled in rodents.

At the light of anatomical observation that layer 5 is

prominently innervated by layer 2/3 pyramids
ODI-PSP
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Fig. 1. Layer- and cell-type specific effects of MD on different types

of pyramidal neurons in rat V1 during the critical period (P20-P30).

The ocular dominance index (ODI) quantifies MD effects on the

ocular dominance of neurons: it varies from 1 to �1 for cells solely

driven by the contralateral or ipsilateral eye, respectively, with

neurons with ODI = 0 being equally dominated by the responses of

the two eyes. MD reduces the ODI of neurons from the usual

contralateral dominance (ODI > 0) observed in controls to the

ipsilateral dominance (ODI < 0), when the normally stronger contra-

lateral eye is closed. MD effect is represented as the drop of the

median ocular dominance index for synaptic and spike responses

(postsynaptic potentials –PSP- and action potential –AP) in the

different cell classes (L2/3P: layer 2/3 pyramids; L4Ps: layer 4

pyramids; L5TPs: layer 5 thick tufted pyramids; L5NPs: layer 5 non-

tufted pyramids). Note that: (a) MD effects are more pronounced for

APs compared to PSPs; (b) the smaller ocular preference shift of

5TPs – compared to overlying pyramids – despite their higher

binocularity of origin; (c) the refractoriness of 5NPs in face of MD.
(Burkhalter, 1989), one would guess that the main output

cortical layer 5 should be similarly affected compared to

layer 2/3. An in vivo whole-cell study followed by morpho-

logical identification and reconstructions of dendritic mor-

phologies showed that, whereas ocular dominance

plasticity is strongly expressed in layer 4 and layer 2/3

pyramidal cells, layer 5 pyramids are only marginally (in

the case of thick-tufted neurons) or not affected (in the

case of slender-tufted cells), both at the level of synaptic

input and spike output responses (Medini, 2011b) – see

Fig. 1. These data raise a series of questions: (a) how

can layer 2/3 drive responsiveness of layer 5, at least in

MD animals? Indeed, since there is a dramatic loss of

responsiveness to the deprived eye in terms of spike out-

puts in layer 2/3 pyramids, how come that the loss of

responsiveness is so scarce (albeit significant) in terms

of synaptic inputs in layer 5 thick-pyramids? We have

already mentioned anatomic and functional data showing

a prominent, direct thalamic innervation of layer 5 pyrami-

dal neurons. More importantly, it has been shown that

mechanical or functional ablation of layer 2/3 scarcely

affect sensory responsiveness in infragranular layers in

both V1 (Schwark et al., 1986) and S1 (Huang et al.,

1998) and also experience-dependent plasticity in S1

(Huang et al., 1998); (b) the very same data set indicates

that the initial degree of binocularity does not dictate the

entity of the ocular dominance shift experienced by a

given class of neurons. Indeed, layer 5 thick pyramids,

that are much more binocular compared to layer 2/3 cells

at the level of single cells, undergo a much smaller ocular

dominance shift. Other factors, such as the determinants

of the coincidence detection properties (e.g. complement

of ion channels dictating the intrinsic excitability, or the

level of inhibition) might cause such cell-type-specific dif-

ferences in the outcome of experience-dependent plastic-

ity; (c) which mechanisms render layer 5 pyramids

partially refractory to MD? One possibility might be the dif-

ferent complement of ion channels in layer 2/3 vs. layer 5

pyramids: for example HCN channels – that reduce the

temporal integration window of pyramidal neurons

(Magee, 1999; Williams and Stuart, 2000) – are more

expressed in layer 5 pyramids compared to layer 2/3 pyr-

amids (Lorincz et al., 2002). Also, the different level of

inhibition (Adesnik and Scanziani, 2010) or the more

depolarized resting membrane potential values of layer

5 cells in the two layers (Medini, 2011b) might be respon-

sible for this. Indeed, a more depolarized membrane

potential might render dissimilar synaptic inputs almost

equally able to drive the neuron to threshold. One way

to resolve this might be to isolate synaptic currents

instead of synaptic potentials in the near future. Finally,

the scarce ocular dominance shift of layer 5 thick-pyra-

mids was at least in part attributable to a limited depres-

sion of synaptic responses to deprived eye stimulation,

coupled with a nearly significant loss of responsiveness

to stimulation of the open eye. These data indicate a gen-

eralized loss of visual responsiveness in layer 5 pyramids

after visual deprivation. Interestingly, this is in line with

recent data from slice work indicating that MD reduces

intrinsic excitability (input resistance) selectively in 5TPs

(Nataraj et al., 2010), as opposed to 2/3Ps (Maffei and
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Turrigiano, 2008) and 4Ps (Maffei et al., 2006). However,

it is hard to say whether such response is general in sen-

sory cortices, as complete whisker trimming increases
intrinsic excitability in layer 5 of S1 due to a decreased

expression of HCN channels (Breton and Stuart, 2009).

Cell-type-specific differences between the two main

types of layer 5 pyramids have been found also in S1:

after whisker deprivation thick-tufted, intrinsically

bursting cells showed only potentiation of responses to

the spared whisker, but not depression of responses to

the deprived whisker, whereas the reverse was true for

slender-tufted, regular spiking layer 5 pyramids (Jacob

et al., 2012). Interestingly, in this case, similar trends

(toward potentiation or depression) were found in the cor-

responding sets of synapses coming into these cells from

layer 2/3, thus in line with the idea that layer 2/3 is indeed

driving layer 5 in whisker-deprived animals.

Interestingly, plasticity of the same sign for a given

synaptic pathway (e.g. loss of responses to the deprived

eye in V1) can be mediated by different molecular

mechanisms in different layers. For example, loss of

responsiveness to the deprived eye is mediated by

retrieval of AMPA receptors from the neuronal

membrane in layer 4 (Heynen et al., 2003; Yoon et al.,

2009), whereas it is dependent on endocannabinoid-med-

iated LTD in layer 2/3 (Liu et al., 2008). Similarly, in S1,

experience-dependent loss of responsiveness to deprived

whiskers depends on GluR1 subunits in layers 4 and 2/3,

but not in layer 5 (Wright et al., 2008). These works indi-

cate that different molecular mechanisms might act in ser-

ies in different synapses, thus possibly amplifying the

synaptic changes at subsequent steps of intracortical

processing.

Why is there an interest in experience-dependent

plasticity of layer 5 pyramidal neurons? Because these

are the main output cells of the cerebral cortex. However,

layer 2/3 pyramids also send their axons to other cortical

areas, albeit not to subcortical targets (as layer 5 cells

do). One future challenge of the neurobiology of the

cortex is certainly to gain a better understanding of the

differential role of layer 5 and layer 2/3 pyramids in inter

area communication and in driving behavior. An

important step forward in improving our understanding of

the physiology of layer 5 in vivo will be to improve the

depth penetration of multiphoton microscopy there

(Mittmann et al., 2011). These advanceswill be particularly

important to address the issue of the functional signifi-

cance of layer- and cell-type-specific plastic responses

in vivo at the more integrative, behavioral level.

HEBBIAN VS. HOMEOSTATIC PLASTICITY:
ROLE OF INPUT COMPETITION IN CORTICAL

MAP PLASTICITY

The initial Hubel and Wiesel’s result that loss of

responsiveness to the deprived eye in V1 is more

pronounced when only one eye is closed (compared to

binocular deprivation), raised the idea that ocular

dominance plasticity is the outcome of a process of

activity-dependent competition between (possibly

thalamo-cortical) terminals driven by the two eyes and
innervating the same set of postsynaptic cortical

neurons (Wiesel and Hubel, 1965). Similarly, in S1,

depression of responsiveness to trimmed whiskers is

greater if a single vibrissa has been deprived than if all

vibrissae have been deprived (Glazewski et al., 1998).

Such results are in line with experience-dependent plas-

ticity being the outcome of a process of hebbian competi-

tion where ‘‘cells that fire together wire together’’. Many

molecular evidences indicated that indeed V1 neurons

act as coincident detectors. First, blockade of molecular

coincident detectors such as N-methyl-D-aspartate recep-

tor (NMDA) (Kleinschmidt et al., 1987) – in a way that did

not significantly interfere with responsiveness – also pre-

vents the outcome of MD (Roberts et al., 1998). Second,

pioneering work by the group of (Maffei et al., 1992) indi-

cated the molecular identity of the ‘‘rewarding factors’’ for

which nerve terminals might compete for: neurotrophins

such as nerve growth factor (NGF) or brain derived nerve

factor (BDNF). Indeed, in case presynaptic terminals

would compete in an activity-dependent way for access

to limited amount of neurotrophins, administering them

in large excess during the MD period would eliminate

competition, in turn allowing also presynaptic terminals

driven by the closed eye to remain connected to V1 neu-

rons. Indeed, local infusions of large excesses of BDNF or

NGF in V1 completely counteract the ocular dominance

shift induced by MD (Lodovichi et al., 2000). It must be

said however, that the neurotrophic hypothesis of ocular

dominance plasticity has been recently revised at the light

of data showing that blockade of the TrkB receptor –

which binds BDNF – with a new chemical-genetic

approach, does not interfere with MD effects in V1

(Kaneko et al., 2008a). Conversely, recovery of deprived

eye responses after restoration of binocular vision was

dependent on the integrity of the BDNF-TrkB signaling.

There are now clear indications that not all

components of the plastic response to MD in V1 are

driven by competitive processes (see also Fig. 2). First,

in the original work where Hubel and Wiesel themselves

compared the effects of monocular and binocular eye

closures on V1 responsiveness, they showed that

complete deprivation of patterned vision during

postnatal development degrades responsiveness in V1,

as the number of visually unresponsive units was

abnormally high in binocularly deprived kittens

compared with normal ones (Wiesel and Hubel, 1965).

In that study, another third of cells were poorly or abnor-

mally responsive, with broader than normal orientation

tuning. Similar detrimental effects have been found in kit-

tens experiencing just a few days of dark rearing during

the critical period (Freeman et al., 1981).

Other works indicated that depression of deprived eye

responses and potentiation of open eye processes are

two temporally and mechanistically distinct processes

(see Fig. 2). Indeed, evoked potentials (Frenkel and

Bear, 2004), chronic single-unit recordings (Mioche and

Singer, 1989), two-photon calcium imaging (Mrsic-Flogel

et al., 2007) and in vivo whole-cell recordings (Medini,

2011b) indicated that loss of responses to the closed

eye occurred earlier than potentiation of open eye

responses. More importantly, it is possible to selectively



Fig. 2. Summary of the mechanistic events occurring during juvenile

ocular dominance plasticity. A network disinhibition -attributable to a

selective reduction of activity in parvalbumin, fast spiking inhibitory

cells(Aton et al., 2013; Kuhlman et al., 2013), together with early

spine plasticity (Yu et al., 2011), have been observed immediately

after the first 24 h of MD. Importantly, such early network disinhibition

is necessary for later ocular dominance plasticity (Kuhlman et al.,

2013). Loss of response to the deprived eye is already at quasi-

saturating levels after 2–3 days of MD, whereas potentiation of open

eye responses is observed later – e.g. (Frenkel and Bear, 2004;

Medini, 2011b). Depression is expressed in layer 4 at the level of

thalamo-cortical inputs in rodents (Coleman et al., 2010; Khibnik

et al., 2010; Medini, 2011b), where the inputs from the two eyes

converge primarily in layer 4. Such depression is attributable to a

process of homosynaptic LTD (Rittenhouse et al., 1999; Frenkel and

Bear, 2004) whose molecular mechanisms are layer-specific (NMDA-

dependent internalization of AMPA receptors in layer 4 (Heynen

et al., 2003; Yoon et al., 2009), endocannabinoid-dependent in layer

2/3 (Liu et al., 2008)). Note that in cats, where convergence of

synaptic inputs from the two eyes occurs primarily in layer 2/3,

plasticity in upper, supragranular layers precedes thalamo-cortical

plasticity (Trachtenberg et al., 2000). In this early time windows

(2–3 days), inhibitory cells remain normally (Gandhi et al., 2008;

Kameyama et al., 2010) or even more responsive (Yazaki-Sugiyama

et al., 2009) to the closed eye, whereas excitatory plasticity have

already lost responsiveness. Interestingly, modeling shows that this

delayed plasticity of inhibitory interneurons could facilitate later

hebbian loss of responsiveness (Gandhi et al., 2008). Open eye

potentiation is a later phenomenon – e.g. (Mioche and Singer, 1989;

Frenkel and Bear, 2004; Medini, 2011b) that could have a homeo-

static functional significance as it maintains the global network activity

levels to quasi-normal levels (Mrsic-Flogel et al., 2007). Consistently

with this idea, postnatal open eye potentiation is mediated by

molecular factors of largely glial origin such as TNFalfa, that also

mediates homeostatic synaptic scaling in response to visual depri-

vation (Kaneko et al., 2008b). Estimates of synaptic conductances

in vivo indicate that at this stage the ratio between synaptic inhibition

and excitation evoked by the deprived eye attains normal levels (Iurilli

et al., 2013; Ma et al., 2013), indicating a rebalancing of the

excitation/inhibition ratio when the plastic process is over.
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interfere with loss of responsiveness to the deprived eye

or with potentiation of the open eye responses by interfer-

ing with different molecular mechanisms. Indeed, block-

ade of AMPA receptor internalization blocks depression
of closed eye responses but does not interfere with poten-

tiation of open eye responses (Yoon et al., 2009),

whereas TNFalfa blockade selectively interferes with

potentiation of open eye responses (Kaneko et al.,

2008b).

In line with the view that the two synaptic paths – the

one driven by the deprived eye and the one driven by the

open eye – undergo independent plastic processes is a

series of work indicating that loss of responsiveness

through the deprived eye occurs through a process of

homosynaptic depression. Indeed, Rittenhouse et al.

showed that in V1 monocular lid suture causes a

significantly greater depression of deprived-eye

responses compared to complete silencing of retinal

activity with intravitreal tetrodotoxin (Rittenhouse et al.,

1999). This indicated that the residual activity coming from

retina after eyelid suture is actually driving a process of

active homosynaptic synaptic depression, in line with the

idea that LTD requires neuronal activity to occur. Interest-

ingly, monocular silencing leaves intact and even strength-

ens potentiation of open eye responses inmiceV1 (Frenkel

and Bear, 2004), indicating that the two processes are

actually mechanistically independent.

Finally, another series of behavioral observations in

cats also suggested that also the process of recovery

from MD is not fully accountable for by competitive

mechanisms. Indeed, a purely competitive mechanism

would foresee that recovery of vision though the closed

eye should be facilitated more by closure of the other,

previously closed eye (reverse-suture) rather than by

binocular vision. Experimental data showed instead that

behavioral recovery of spatial vision is quicker if the

animal is let in intact binocular vision compared to both

reverse suture (Mitchell et al., 2001; Kind et al., 2002),

indicating that it is the absolute amount of correlated
activity arriving to visual cortical neurons that matters in

setting the threshold for facilitating recovery of the

strength of the synapses driven by the previously

deprived eye. It is indeed possible that not only the abso-

lute amount of activity matters, but also the relative timing

(i.e. the degree of temporal correlation) between the two

eyes that matters. Indeed, the more powerful activity com-

ing from the open eye could facilitate, if correlated in time,

synaptic strengthening of the previously deprived eye via

some kind of heterosynaptic facilitation, that at least in

rodents requires the integrity of the TrkB signaling

(Kaneko et al., 2008a).

To test directly whether loss of synaptic inputs from the

deprived eye can occur in absence of competing inputs,

we tested with in vivo whole-cell recordings for loss of

responsiveness in the main thalamorecipient layer 4 in

the monocular segment of V1, where competing

thalamic afferents cannot arrive. Importantly, the effects

of MD in mV1 remained controversial. Evoked potential

intracortical recordings (Smith et al., 2009), flavoprotein

intrinsic imaging (Tohmi et al., 2006), and functional anat-

omy with c-fos staining (Pham et al., 2004) revealed that

MD is ineffective in monocular V1. Conversely, intrinsic

signal imaging (Kaneko et al., 2008b; Faguet et al.,

2009), epidural evoked potentials (Heynen et al., 2003),

and extracellular spike recordings (Spolidoro et al.,
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2011) reported a significant depression of responsiveness

upon critical period MD in mouse monocular V1. In some

of these reports (Kaneko et al., 2008b; Spolidoro et al.,

2011), the loss of responsiveness in monocular V1 was

only temporarily observed upon brief MD and not after pro-

longed MD (but see (Faguet et al., 2009)). Another impor-

tant work using two-photon calcium imaging in vivo
reported instead a potentiation of responsiveness (Mrsic-

Flogel et al., 2007) after 5–6 days of MD. This latter work

did not show how responses changed in monocular V1

after brief MD (2 days), so a transient reduction of respon-

siveness could have also been present in Mrsic-Flogel

experiments. Our results indicated that a prolonged period

of MD during the critical period (P20-P30 in rats) causes

the same amount of depression of synaptic responses in

monocular and binocular V1 (Iurilli et al., 2011). Also, the

same amount of depression occurred after binocular

deprivation in binocular V1. Such depression in layer 4

of monocular V1 was not observed upon retinal silencing

with intravitreal TTX, and was attributable to pure depres-

sion of thalamocortical inputs to layer 4.

Taken together, all these evidences require us to

reconsider the role of competition in triggering the

behaviorally relevant loss of responsiveness to the

deprived eye that follows MD.

The effects of MD in monocular V1 are interesting

because in such conditions one expects to document

some signs of the so-called homeostatic plasticity (see

Fig. 2). Homeostatic plasticity has been observed

initially by the group of Gina Turrigiano. After network

silencing with TTX cultured neurons react by increasing

the amplitude of miniature excitatory currents, a

phenomenon that is attributable to increased

postsynaptic sensitivity to glutamate (Turrigiano et al.,

1998). Homeostatic plasticity has the role of restoring

quasi-normal level of spiking activity in the network upon

input changes. Such homeostatic potentiation of excit-

atory mini currents has been observed also after MD in

V1 (Desai et al., 2002). Importantly, a two-photon calcium

imaging has shown increased responsiveness of layer 2/3

neurons in monocular V1 after MD (Mrsic-Flogel et al.,

2007) – an observation we confirmed at the level of syn-

aptic inputs (Iurilli and Medini, unpublished data). As we

observed a loss of visual responses in layer 4 instead,

these latter observations suggest that homeostatic

changes can be also layer- and cell type-specific. In line

with this possibility, recent slice works indicated that MD

during the critical period causes layer-specific changes

in the excitability of pyramidal neurons in monocular V1,

being excitability increased in supragranular layers

(Maffei and Turrigiano, 2008) but decreased in infragran-

ular layers (Nataraj et al., 2010).

Moreover, the observation that layer 5 slender

pyramids, that in binocular V1 are almost monocularly

driven, do not potentiate their response to the open eye

after MD (Medini, 2011b) is also in line with the idea that

homeostatic changes are highly layer- and cell-type spe-

cific. Of relevance, their precise impact on how the func-

tionality of visual cortical circuits changes in vivo after

manipulations of the visual environment remains rather

obscure.
An interesting question is when homeostatic changes

occur in response to MD in V1. The late eye potentiation

driven by MD in binocular V1 might have a homeostatic

significance, because removing inputs from one eye

reduces the net level of firing in the cortical network.

Interestingly, TNFalfa, which mediates synaptic

homeostatic scaling in cultures, (Stellwagen and

Malenka, 2006), is also essential for potentiation of open

eye responses in V1 (Kaneko et al., 2008b).

However, recent work showed that homeostatic

plastic changes of the cortical network occur pretty

quickly, beginning as soon as the deprivation begins

(Fig. 2). This quick response dynamics makes sense at

the light of the functional significance of such plastic

response. Indeed, a recent work (Kuhlman et al., 2013)

indicated that within the first 24 h after MD onset there

is a disinhibition of the cortical excitatory network that is

mediated by a reduction of firing of parvalbumin-positive

inhibitory cells. Importantly, such initial homeostatic

response is essential for later ocular dominance plasticity,

as pharmacogenetic increase of inhibition in this initial

time window prevents full expression of the subsequent

plasticity. Recent extracellular chronic recordings in cat

V1 followed by spike sorting of putative inhibitory and

excitatory neurons (Aton et al., 2013) also showed a

selective reduction of the firing responses and of the firing

rates of fast-spiking interneurons to open eye stimulation

immediately after MD (first 24 h), suggesting that such a

quick disinhibitory response of the network immediately

after MD is conserved across species. Interestingly, such

an early disinhibitory responses seems a general

response in other primary sensory cortices because it

has been recently documented also in S1 after whisker

deprivation (Li et al., 2014a), and also in that case it has

been associated with a reduced sensory-driven inhibition.

Thus, the picture that begins to emerge is that the two

types of plastic response (hebbian and homeostatic)

occur in the cortical network in a precise temporal

sequence, where one plastic event possibly ‘‘sets the

stage’’ for the next one (e.g. a hebbian phase) – see

Fig. 2.

INHIBITORY CIRCUITS PLASTICITY: ROLES IN
MODIFYING EXCITATORY

CELL RESPONSIVENESS AFTER
EXPERIENCE-DEPENDENT PLASTICITY

Synaptic inhibition in the cerebral cortex is a crucial

determinant of experience-dependent plasticity. Current

data are in line with the idea that a first minimal level of

synaptic inhibition must be reached to initiate the critical

period. Indeed, mice lacking the isoform of the GABA

synthesizing enzyme GAD65 present in the synaptic

terminals are never sensitive to MD, unless the use-

dependent agonist diazepam is administered (Hensch

et al., 1998). Enhancement of inhibition by diazepam

opens a normal critical period for ocular dominance plas-

ticity at any age in such mice. Surprisingly, a single diaz-

epam injection is able to open the critical period also in

wild-type mice at P15, earlier than normal (Fagiolini and

Hensch, 2000).
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After the critical period opening, maturation of

synaptic inhibition continues in an activity- and BDNF-

dependent way. There is a positive loop between

sensory-driven activity and BDNF synthesis and release

(Thoenen, 1995). Importantly, mice that overexpress

BDNF display an accelerated maturation of inhibition

and an accelerated critical period closure (Huang et al.,

1999). In line with the idea that an increase of synaptic

inhibition in the adult limits experience-dependent plastic-

ity in the adult are also experiments showing that reducing

inhibition in adults – either pharmacologically (Maya

Vetencourt et al., 2008; Harauzov et al., 2010) or through

exposure to environmental enrichment (Sale et al., 2007,

Greifzu et al., 2014) – reinstates ocular dominance plas-

ticity in adult V1. In the interpretation of these results,

one should take into account that in both situations the

pattern of electrical activity of neurons might have chan-

ged as a consequence of these manipulations and hence

other factors might have caused this effect (e.g. activity-

dependent secretion of growth factors). Reducing inhibi-

tion in adulthood could be a sort of ‘‘common final path-

way’’ reinstating a permissive state for plasticity, with

several environmental and molecular manipulations lead-

ing to such a favorable condition for plasticity

reinstatement.

Further work identified that GABAergic synapses

containing the alfa1 receptor subtype are those that are

crucial for critical period opening. Indeed, using mice

with mutation in alfa subunits that render the GABA

receptor insensitive to diazepam, Fagiolini et al. (2004)

identified that mutant alfa2 and alfa3 subunits, but not

alfa1 subunits, could still produce a precocious critical

period opening upon early diazepam injections(Fagiolini

et al., 2004). Since such receptors are particularly

enriched at perisomatic synapses formed by parvalbu-

min-positive, fast spiking interneurons around the somata

of target neurons, this work identified these inhibitory cells

(that represent about 50% of cortical interneurons

(Gonchar and Burkhalter, 1997)) as a critical cellular

determinant of experience-dependent plasticity. Taken

together, these evidences indicate that a certain level of

inhibition (neither too low nor too high) is crucial for ocular

dominance plasticity. The precise mechanisms underlying

this permissive action of inhibition on experience-depen-

dent plasticity in vivo remain elusive. The hypothesis that

either too much or too low inhibition can impair the capa-

bility of excitatory pyramidal cells to act as coincidence

detector should be carefully tested in the near future, at

the light of the observation that GABAergic inhibition

can profoundly alter the synaptic integration properties

of neurons (Pouille and Scanziani, 2001).

It is interesting to observe that lowering of inhibitory

transmission occurs also in other circumstances know to

trigger cortical circuit rearrangements. Indeed, after a

focal cortical lesion, plastic changes that possibly

underlie functional recovery occur in the perilesional

area (Murphy and Corbett, 2009). For example, in the sur-

roundings of a visual cortical lesion, the surviving neurons

display a receptive field enlargement (Eysel and

Schweigart, 1999; Zepeda et al., 2004), similar to what

has been observed in the limb representation of S1
(Murphy and Corbett, 2009). In the perilesional area pha-

sic, synaptic inhibition has been shown to be reduced

(Mittmann et al., 1994; Wang, 2003) – albeit tonic, extra

synaptic inhibition is increased (Clarkson et al., 2010):

noticeably, the two things might together render the syn-

aptic impact of sensory-driven inhibition smaller than nor-

mal. The precise role played by such a lowering of phasic,

synaptic inhibition in receptive field plasticity remains

obscure, but what is known is that once again this postle-

sional lowering of inhibition is accompanied by a facilita-

tion of synaptic plasticity (such as LTP) in the lesion

surroundings (Mittmann and Eysel, 2001). Interestingly,

there are reports suggesting a reduction of inhibition also

within the cortical representation of a retinal scotoma

(Massie et al., 2003; Keck et al., 2011). A focal retinal sco-

toma leaves a ‘‘blind spot’’ in the V1, where neurons are

not visually responsive at the beginning after the lesion.

However, after some weeks neurons inside the blind spot

in V1 begin responding to stimulation of visual field posi-

tions neighboring the blind spot – a phenomenon docu-

mented in both cats (Gilbert and Wiesel, 1992) and

mice (Keck et al., 2008). Since RF expansion occurs

inside the cortical representation of a scotoma, as well

at the border of a focal stroke, and since in both cases

there are indications of a reduced level of inhibition in

the areas where compensatory plasticity occurs, the exis-

tence of a causal link between reduced functioning of

inhibitory circuits and excitatory circuit RF plasticity (i.e.

RF expansion) should be explored in the near future.

The second type of question concerning the role of

inhibition in experience-dependent plasticity is whether

changes of inhibitory circuits could be responsible for

the expression of plasticity in excitatory pyramidal cells.

In other words, several investigations tried to

understand whether inhibitory neurons contribute to the

changes of responsiveness of excitatory cells, possibly

by undergoing plastic changes that are equal but

opposite in sign. So, this question of whether inhibition

has also some kind of ‘‘instructive’’ role in experience-

dependent plasticity of the excitatory network is strictly

linked to the question of whether inhibitory cells undergo

a differential plastic response compared to excitatory

cells. Simply formulated, the loss of sensory responses

normally observed after sensory deprivations might be

due to reduced excitatory drive (for example from the

thalamus), but also to increased or at least unaltered

inhibition compared to controls. Experimental works

have tried to address this important point in three ways

(see Fig. 2).

(1) First, do inhibitory interneurons remain selectively

connected to the deprived input after the sensory

deprivation has started? In other words, do they

continue to spike normally or even supra-normally

to deprived eye stimulation upon MD? Several

recent works have tried to address this issue. In

one work Gandhi et al. (2008) used knock in mice

in which GFP expression was under the control of

the GABA synthesizing enzyme (GAD67) promoter

to study the response of GFP-labeled interneurons

to MD (Gandhi et al., 2008). They found that after
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5–6 days of MD both excitatory and inhibitory cells

shifted their ocular dominance in favor of the open

eye and lost responsiveness to the closed one. Sur-

prisingly, a briefer MD period (2 days) resulted in a

detectable ocular dominance shift in excitatory

cells, but not in inhibitory interneurons. In a second

work, Kameyama et al. (2010) repeated this exper-

iment in mice in which a GFP variant was under the

control of the vescicular GABA transporter VGAT

(Kameyama et al., 2010). They found that a brief

MD episode similarly shifted the ocular dominance

of excitatory and inhibitory cells toward the open

eye. However, the ocular dominance shift of inhibi-

tory cells was mostly attributable to potentiation of

open eye responses, whereas the response to the

deprived eye remained normal. Finally, sharp

microelectrode recordings in mouse V1 found that

fast-spiking, putative parvalbumin-positive interneu-

rons shifted their ocular dominance in favor of the

open eye in a similar way to excitatory cells after

prolonged MD (Yazaki-Sugiyama et al., 2009). Con-

versely, a brief MD episode caused a normal shift of

ocular dominance shift in excitatory neurons but a

paradoxical shift of the responses of inhibitory cells

toward the open eye. In rats, data are available only

for prolonged MD times: a c-fos study showed that

parvalbumin-positive cells remain selectively con-

nected to the deprived eye (Mainardi et al., 2009).

Conversely, putative inhibitory interneurons isolated

with spike sorting from extracellular recordings

undergo a similar preference shift of ocular domi-

nance compared to excitatory cells after a pro-

longed MD (10 days) (Iurilli et al., 2013). The

difference between these two studies in rats might

be due to the much longer deprivation time used

in the c-fos study (several weeks), but also to the

different technical approaches used. Importantly,

in all three studies in mice there was a differential

response of inhibitory interneurons and excitatory

cells to a brief MD episode, because the plastic

response of inhibitory cells is slower. The differ-

ences among these works could be related to both

the use of different promoter of the reporters for

labeling interneurons in the two-photon studies

and in the different techniques used (two-photon

population calcium imaging vs. intracellular sharp

recordings). In other words, there is no certainty

that the populations of cells sampled in the three

works were precisely overlapping.

(2) The second type of approach is to understand

whether and how inhibitory synaptic input onto pyra-

midal cells changes after a sensory deprivation.

Works in slices show that after a brief MD episode

synaptic inhibition from fast-spiking cells to excit-

atory pyramids is potentiated within layer 4 in both

the monocular (Maffei et al., 2006) and binocular

(Maffei et al., 2010) portions of V1 a brief MD epi-

sode. However, this work might not necessarily pre-

dict the total amount of postsynaptic inhibition

received in vivo because this also depends, for

example, on the amount of presynaptic recruitment
of inhibitory cells on one side, and on how other

types of inhibitory cells (e.g. somatostatin-positive

or 5HT3-positive) might be influenced by sensory

deprivation, as well as from interlaminar inhibition.

Two recent studies tried to quantify excitatory and

inhibitory visually driven conductances in vivo in

MD rodents. The first work (Ma et al., 2013) was

done in voltage clamp in mice and reports that excit-

atory and inhibitory conductances measured upon

deprived eye stimulation were similarly reduced

after both brief and prolonged MD in mice. The sec-

ond work (Iurilli et al., 2013), done in current clamp

in rat V1, also showed a similar reduction of excit-

atory and inhibitory conductances after prolonged

MD, but did not explore the effects of brief MD. Both

works indicate that the loss of deprived eye inputs is

not accompanied by an increased inhibition driven

by that eye.

(3) The third experimental approach to the question of

whether inhibition plays a causal role in shaping

the response of excitatory cells consisted of various

attempts to reduce inhibitory transmission and see-

ing whether this manipulation caused a selective

increase of deprived input responses (unmasking

of deprived inputs). Microiontophoresis of GABA

antagonists showed that in cat V1 only 30% of cor-

tical neurons changes their ocular dominance after

MD (Sillito et al., 1981). Based on the data in mouse

V1 showing that inhibitory interneurons remain pref-

erentially connected to the deprived eye after a brief

MD (Gandhi et al., 2008), one would expect that

GABA blockade might cause a selective unmasking

of responses to the deprived eye. Intracellular

blockade of GABAergic transmission in a sharp

microelectrode study revealed indeed that the ocu-

lar dominance of neurons dominated by the closed

eye shifted in favor to the open eye, but also the

inverse effect was reported (cells dominated by

the open eye became dominated by the closed

eye), so that in the end the ocular dominance distri-

bution of the population remained unaltered after

such manipulation (Yazaki-Sugiyama et al., 2009).

Overall, the interpretation of the results of GABA

blockade experiments is always rendered difficult

by the fact that this manipulation is changing the

excitability of cortical neurons (e.g. increasing

the input resistance), and hence modifying the

responses to both eye stimulation.

So, the role of inhibitory plasticity in shaping sensory

responsiveness of excitatory cells after sensory

deprivation remains not completely understood.

However, analysis of the most recent literature in mice

indicates that after a brief MD there is an initial period of

imbalance where visually driven inhibition through the

deprived input is higher than normal. Interestingly,

modeling results (Gandhi et al., 2008) also indicate that

the initially preserved or even increased synaptic inhibi-

tion (at least in relative terms, compared to excitation)

upon brief MD can accelerate the further loss of respon-

siveness by Hebbian mechanisms.
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POSTNATAL AND ADULT CORTICAL
PLASTICITY: DIFFERENCES IN MECHANISMS

AND SIGNIFICANCE

The critical period is defined as a temporally defined time

window during postnatal development when cortical

circuits are particularly sensitive to manipulations of the

sensory environment. Previous works defined the

duration of the critical period for ocular dominance

plasticity in monkeys (Horton and Hocking, 1997), kittens

(Mower, 1991), ferrets (Issa et al., 1999), rats (Fagiolini

et al., 1994) and mice (Gordon and Stryker, 1996). Initial

extracellular recordings – where the ocular dominance

was expressed as relative strength of single units

between the two eyes – identified a clear critical period

in anesthetized mice (Gordon and Stryker, 1996). How-

ever, absolute visually evoked potential measurements

of the responses to independent stimulation of the two

eyes showed that, whereas depression of deprived eye

responses is only observed in juvenile animals, potentia-

tion of open eye responses is observed also in adult mice

– such potentiation being dependent on NMDA receptor

function (Frenkel and Bear, 2004). Interestingly, some-

what similar results have been reported in S1, where

whisker deprivation continues to be effective in layer 2/3

during adulthood (Glazewski et al., 2000). The main differ-

ence between adult and juvenile animals is that in adult

animals only potentiation of spared whisker responses is

observed, whereas deprived whisker depression occurs

only in juvenile animals. These studies forced us to revise

critically and to refine the concept of ‘‘critical period plas-

ticity’’ (Hofer et al., 2006).

Experience-dependent plasticity observed in cortical

circuits during adulthood is both qualitatively and

quantitatively different from the juvenile cortical

plasticity. The first consideration is that the capability of

cortical circuits to suppress unused synaptic inputs

seems restricted to the postnatal critical period. Indeed,

only potentiation of open eye responses is observed

after long-term MD in adult mice (Sawtell et al., 2003),

whereas both depression of deprived eye inputs and

potentiation of open eye responses occur in juvenile ani-

mals (Frenkel and Bear, 2004). Second, ocular domi-

nance plasticity is quantitatively larger in younger

animals and it takes more time for full expression (Sato

and Stryker, 2008). Third, the duration and maybe even

the existence at all- of a critical period depends on the

parameters of the sensory stimulus under investigation

and on the synaptic path, as exemplified by the fact that

in S1 different layers have different critical periods in

response to the very same manipulation of the sensory

environment (univibrissa rearing) (Fox, 1992; Glazewski

and Fox, 1996). Fourth, adult V1 plasticity relies on differ-

ent molecular mechanisms. Indeed, genetic interferences

with either TNF signaling or GluA1 impairs ocular domi-

nance plasticity in juvenile animals, but none of these

manipulations impaired open eye response potentiation

in adult mice (Kaneko et al., 2008b, Ranson et al.,

2012, 2013). Conversely, adult visual cortical plasticity

depends on NMDA-receptor dependent mechanisms

and on autophosphorylation of CaMKII (Ranson et al.,
2012). So, in V1 adult potentiation of open eye responses

depends on NMDA receptors (see also (Sawtell et al.,

2003) but not on AMPA receptors. Fifth, the same type

of plastic response (e.g. input potentiation) can depend

on different molecular mechanisms as a function of the

stimulus parameter. For example, another form of

response potentiation observed in both juvenile and adult

mice – the one observed after repeated exposures of an

animal to a grating of a given orientation – depends at

all ages on both AMPA and NMDA receptors (Frenkel

et al., 2006).

In general, adult cortical plasticity seems to be favored

by a decrease in the level of inhibitory neurotransmission.

This is in line with all works summarized above indicating

that maturation of synaptic inhibition in the cortex is an

essential determinant of the closure of the critical

period. Reducing inhibitory transmission in the adult

cortex – either pharmacologically (Maya Vetencourt

et al., 2008; Harauzov et al., 2010) or by exposing ani-

mals to an enriched environment (Sale et al., 2007,

Greifzu et al., 2014) – reinstates sensitivity to MD in V1.

Visual experience is considered to be an essential deter-

minant to trigger a proper maturation of inhibitory trans-

mission during postnatal development, as dark rearing

animals during postnatal development is known to leave

V1 in a functionally immature state and delay critical per-

iod closure (Gianfranceschi et al., 2003; Pizzorusso et al.,

2006). Dark rearing also prevents functional maturation of

inhibitory transmission (Morales et al., 2002;

Gianfranceschi et al., 2003; Jiang et al., 2010a,b). Signif-

icantly, depriving animals of patterned vision through dark

rearing has been shown to reopen a window for juvenile-

like plasticity (e.g. accompanied by loss of responsive-

ness to the closed eye) in adult V1 (He et al., 2006,

2007; Duffy and Mitchell, 2013), and that this reinstate-

ment of juvenile-like plasticity is accompanied by a

reduced level of inhibitory transmission (Huang et al.,

2010).

Several studies have attempted to re-open a window

of opportunity for experience-dependent plasticity in

adult animals. These works had the important role of

defining the molecular determinants of the juvenile

critical period, because one of the criteria for defining a

molecule as a ‘‘molecular determinant of the critical

period’’ is the possibility to reinstate ocular dominance

plasticity upon molecular interference with this very

same molecule in adult animals. For example,

condensation of specific extracellular matrix components

(chondroitin-sulfate proteoglycans) around parvalbumin-

positive interneurons is a molecular determinant of the

critical period, as their enzymatic degradation in adult

V1 by chondroitinase robustly reinstates sensitivity to

MD in rats (Pizzorusso et al., 2002) – but note the weaker

effect in cats (Vorobyov et al., 2013). Similar results have

been obtained by molecular interference with myelination

(McGee et al., 2005), exposure to environmental enrich-

ment (Sale et al., 2007), to antidepressants (Maya

Vetencourt et al., 2008), enhancement of nicotinic cholin-

ergic transmission (Morishita et al., 2010), or transplanta-

tion of precursors of inhibitory neuronal precursors

(Southwell et al., 2010). Interestingly, the common final
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mechanisms behind the reinstatement of experience-

dependent plasticity in the adult neocortex might have

been a reduction of inhibitory transmission in several of

these works: this is for example the case of environmental

enrichment (Sale et al., 2007), antidepressant treatment

(Maya Vetencourt et al., 2008), might have been the case

for transplantation of inhibitory precursors (as the connec-

tions formed by these transplanted inhibitory cells were

weaker than normal, albeit more numerous (Southwell

et al., 2010)). Interestingly, also chondroitinase treatment

reduces inhibitory transmission in the V1 (Liu et al., 2013),

and it might be interesting to understand the role of extra-

cellular matrix digestion on the spiking of inhibitory cells

in vivo.

These studies are very interesting as they provide

essential information on how to reinstate experience-

dependent plasticity on one side, and to design new

strategies to promote recovery from lesions on the other

side (because this latter process is also a form of

experience-dependent plasticity). However, a word of

caution is necessary in the interpretation of these

results. One should indeed be careful in stating that

these are ways to prolong or ‘‘reactivate the critical

period’’, because one should first proof that this

enhanced adult visual cortical plasticity has the same

features of that observed in juvenile animals (e.g. loss

of responsiveness to the deprived eye – as shown for

example in He et al. (2006)).

This discussion on the functional significance of the

critical period for ocular dominance plasticity is

interesting at the light of a recent work showing a

possible functional role of the ‘‘juvenile’’ critical period

(Wang et al., 2010). This work showed that the orientation

preference of the responses evoked by separate stimula-

tion of the two eyes in binocular V1 neurons is mis-

matched at the beginning of the critical period. Matching

of orientation preference between the two eyes is attained

later by the end of the critical period. Such orientation

match is also prevented by dark rearing and is not

observed in MD animals, indicating that one of the func-

tions of exposure to a normal, patterned visual experience

during development, and hence one of the functions of the

critical period itself, might be allowing such experience-

dependent matching of orientation tuning between the

two eyes. This opens questions on the possible functional

significance of the reactivated forms of ocular dominance

plasticity in adult animals present in the literature,

because such matching phenomenon has already

occurred in adult animals.

A possible functional significance of the residual

sensory cortical plasticity might be for learning purposes.

Indeed, when adult rats experience an association

between visual stimuli and subsequent rewards, V1

neurons begins to respond and predict the timing of the

reward, rather than simply responding to the physical

attribute of the visual stimulus (Shuler and Bear, 2006).

Such mechanisms require the integrity of cholinergic

innervation to V1 (Chubykin et al., 2013). Also, repeated

presentation of orientation or of a specific sequence of

visual stimuli gives rise to a selective potentiation of the

repeatedly presented configuration (Frenkel et al., 2006)
or sequence (Gavornik and Bear, 2014) of visual stimuli.

Of relevance, work in A1 showed that it is possible to

obtain tonotopic map plasticity in adult rats by paring the

presentation of a given tone with electrical stimulation of

the nucleus basalis of Meynert, a major source of choliner-

gic fibers to the cortical mantle (Kilgard and Merzenich,

1998). Several important questions remained open. First,

by which cellular mechanisms such cholinergic-mediated

plasticity, that can be instrumental for learning the behav-

ioral meaning of certain stimuli, occurs in the cortex? Sec-

ond, by which type of interaction with the cortical circuits

could cholinergic stimulation modify the receptive field of

cortical neurons? Insights came from an in vivo whole-cell

recording study in A1 in adult rats that displayed tonotopic

RF plasticity in response to association between a certain

tone presentation and cholinergic stimulation (Froemke

et al., 2007). Pairing caused a reduction of the inhibitory

response and an increase of the excitatory response spe-

cifically to the paired stimulus that was followed by a rebal-

ancing of the two later in time. Once again, these data

suggest that a temporary disinhibition of excitatory cortical

circuitries could be necessary to trigger a plastic receptive

field change.

FUNCTIONAL AND STRUCTURAL PLASTICITY:
UP TO WHICH DEGREE CAN THE TWO
COMPONENTS BE TEMPORALLY AND
MECHANISTICALLY SEPARATED?

The initial studies on the anatomical substrate of ocular

dominance plasticity focused on structural changes of

thalamocortical fibers. Subsequent single axon

reconstructions in kitten V1 showed that the shrinkage

of thalamocortical axons requires at least 3–4 days of

MD (Antonini and Stryker, 1993a). However, such thala-

mocortical plasticity cannot explain the earliest plastic

response in cat V1, because 1 and 2 days of MD are

enough to cause a nearly saturating ocular dominance

shift in layer 2/3, without a detectable ocular dominance

shift in the thalamo-recipient layer 4 (Trachtenberg

et al., 2000). Consistently, anatomical changes in layer

2/3 are much quicker upon changes of the visual environ-

ment: 2 days of strabismus are enough to cause a selec-

tive strengthening of horizontal connections that in layer

2/3 link ocular dominance columns representing the same

eye (Trachtenberg and Stryker, 2001).

The scenario might be different in mice, where the

inputs from the two eyes are highly intermingled already

in the main thalamorecipient layer 4 and where there is

no columnar architecture of V1 neurons according to

ocular dominance (Antonini et al., 1999). In line with the

idea that in rodents the initial effects of MD are in layer

4, there is evidence that anatomical shrinkage of thal-

amo-cortical fibers accompanies MD since the very begin-

ning in layer 4 (Coleman et al., 2010).

The postsynaptic correlate of morphological plasticity

is the plasticity of dendritic spines – the postsynaptic

side of excitatory synapses. Di-olistic labeling of spines

with the lipophilic dye DiI showed that brief MD causes

a reduction of spine density on the dendritic arbours of

layer 2/3 pyramidal cells and that such spine pruning is
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dependent on extracellular matrix proteases such as tPA

(Mataga et al., 2004). In vivo two-photon microscopy

allows longitudinal monitoring of spine and dendritic ana-

tomical dynamics in vivo. We talk about spine ‘‘dynamics’’

because dendritic spine heads move with respect to their

parent dendrite (Fischer et al., 2000) and undergo a con-

stant turnover in vivo, meaning that some of them contin-

uously disappear and new ones are continuously formed.

Pioneering work in S1 by the group of Karel Svoboda

showed that dendritic spine turnover is sensitive to alter-

ations of the sensory environment (Lendvai et al.,

2000). Short MD, but also tPA infusion (Oray et al.,

2004) and CSPG digestion (de Vivo et al., 2013)

increases spine motility in V1 in layer 5 and layer 2/3 pyra-

midal neurons. Further work also showed that MD dou-

bles the addition of dendritic spines into the apical tufts

of layer 5 pyramidal cells (Hofer et al., 2009). This works

highlights once again the presence of layer-specific

changes in spines during ocular dominance plasticity, as

brief MD causes loss of spines in the dendrites of layer

2/3 pyramids (Mataga et al., 2004), but addition of new

spines in layer 5 pyramids.

Also axonal terminals display significant structural

plasticity in vivo as documented by longitudinal two-

photon imaging through cranial windows. Axonal

boutons also disappear and new ones appear

continuously. For example, ingrowth of horizontal

connections (formed by excitatory cells) has been

documented from the periphery of the cortical

representation of a retinal scotoma to the cortical blind

spot in mice (Darian-Smith and Gilbert, 1994; Keck

et al., 2008), cats (Darian-Smith and Gilbert, 1994) and

monkeys (Yamahachi et al., 2009). Interestingly, axonal

boutons formed by inhibitory cells are significantly

reduced inside the cortical representation of the scotoma

(Keck et al., 2011), in line with findings of reduced inhibi-

tory transmission within the cortical representation of the

scotoma (Massie et al., 2003).

Other technically challenging studies monitored how

inhibitory neurons respond over time to alterations of the

sensory environment. Surprisingly, single inhibitory

neurons (but not excitatory ones) undergo remodeling of

entire dendritic branches over time in normal animals

(Lee et al., 2006). MD during adulthood induced net

retractions of the dendritic branches of inhibitory interneu-

rons, which were accompanied by a reduction of inhibitory

synapses selectively onto neighboring layer 5 pyramids

(Chen et al., 2011). Another important piece of work

was the recent finding that MD in adult mice causes a

transient loss of Gephryn-labeled inhibitory synapses on

spine heads of excitatory pyramids (van Versendaal

et al., 2012). Such a putative reduction of inhibition might

be a favoring factor for LTP of synapses driven by the

open eye, in line with the observation that LTP in V1 is

favored by a reduction of the inhibition (Kirkwood and

Bear, 1994).

Two general comments on the functional relevance of

this morphological (subcellular) plasticity should be made:

first, that spine plasticity accompanies experience-

dependent plasticity on a very quick time scale (even

within few hours (Yu et al., 2011)). Second, electron
microscopy showed that newly formed spines in excit-

atory cells (Trachtenberg et al., 2002) and also remodeled

dendritic branches in inhibitory neurons host synaptic

contacts (Chen et al., 2011), indicating that these mor-

phological changes can reflect the changes observed

functionally with electrophysiology or calcium imaging

(Fig. 2).
ROLE OF GLIAL CELLS IN CORTICAL
NEURONAL PLASTICITY

Cortical astrocytes respond to sensory stimuli in both S1

(Wang et al., 2006) and V1 (Schummers et al., 2008) with

calcium oscillations, because they are endowed with

metabotropic classes of both glutamatergic and GABAer-

gic receptors that sense the spillover of such neurotrans-

mitters from synapses in the extracellular space

(reviewed in (Parpura et al., 2012)). Astrocytes have an

extended plexus of cellular terminations that are inti-

mately associated to synaptic clefts. Such astrocytic pro-

cesses are thought to be part of a morpho-functional unit

called ‘‘the tripartite synapse’’ (including the presynaptic

neuron, the postsynaptic neurons and the astrocyte).

Due to the capability of astrocytes to sense the ‘‘inte-

grated’’ activity of the local network, and due to their capa-

bility to release plasticizing growth factors such TNFalfa,

astrocytes are thought to be ideal candidates to mediate

those plastic responses to the alteration of the total level

of activity of the local network, namely homeostatic

responses.

A possible role of glial cells in experience-dependent

plasticity was suggested by provocative studies at the

end of the 80s’ showing that transplantation of immature

astrocytes in the adult V1 reinstates plasticity in

response to MD (Muller and Best, 1989) and that cytolog-

ical maturation of astrocytes is delayed by dark rearing in

those layers where dark rearing is known to retard plastic-

ity (Muller, 1990).

Astrocytes can release growth factors important for

homeostatic plasticity such as TNFalfa. Indeed, TNF

alfa of astrocytic origin mediates synaptic scaling in

astro-neuronal co-cultures (Stellwagen and Malenka,

2006). So, it is possible to postulate that the TNFalfa that

mediates homeostatic potentiation of open eye responses

in MD animals (Kaneko et al., 2008b) might be of astro-

cytic origin.

A second type of plasticity in which astrocytes might

be involved is the one that follows strokes. Reactive

astrocytosis after stroke is neuroprotective (Li et al.,

2008). After stroke, astrocytes might play a role in the

changes in the inhibitory transmission in the lesion periph-

ery, where compensatory plasticity occurs. Indeed, reac-

tive astrocytosis has been shown to selectively impair

inhibitory neurotrasmission, due a reduced activity of the

glutamine synthase enzyme in reactive astrocytes that

in turn reduces the availability of the substrate for GABA

synthesis in principal neurons (Ortinski et al., 2010). Such

an effect could play a role in the reduction of phasic, syn-

aptic inhibitory transmission that has been observed in the

lesion surroundings (Mittmann et al., 1994). Conversely,

tonic, extrasynaptic inhibition has been shown to increase
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in the lesion surroundings, a phenomenon that plays a

role in functional recovery (Clarkson et al., 2010). Inter-

estingly, such an effect is also mediated by astrocytes,

as it is due to the downregulation of specific isoforms of

GABA re-uptake transporters in reactive astrocytes.

After all, the precise roles played by astrocytes in

experience-dependent plasticity of cortical microcircuits

has only begun to be addressed, but new discoveries in

this field are expected, also because it is now becoming

possible to molecularly or optogenetically interfere with

the activity and with the release of glial-derived factors

in the extracellular space (the so-called process of ‘‘glio-

exocytosis’’ (Li et al., 2013)).
CONCLUDING REMARKS ON FUTURE
DEVELOPMENTS

The biggest challenge in the future would be to exploit

recently developed electrophysiological tools and design

new optical approaches to study how functional

connectivity between identified neuron types is modified

by experience-dependent plasticity in the living brain.

The combination of transynaptic tools with optogenetics

and optical advances to explore synaptic connectivity

in vivo will certainly qualitatively modify our

understanding of how cortical microcircuits are modified

during experience-dependent plasticity. Such innovative

approaches will allow to identify the order in which

synaptic connectivity of cortical circuits are modified by

changes of the sensory experience (see Fig. 2). In turn,

this will allow studying whether one given modification in

one set of synapses casually modifies another set of

synapses. Also, such an innovative, yet very challenging

approach, will allow testing the differential role of specific

molecular players in the series of synaptic modifications

observed in vivo. The second big challenge will be then

to understand whether modifications of identified, cell-

type-specific connections differentially impact on the

animal behavior.
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