1,391 research outputs found

    Below Average Mathematics Student Improvement Program And The Classroom Of The Future

    Get PDF
    Contains a set of viewgraphs for a presentation on how artificial intelligence and other teaching aids can improve the quality of mathematics education

    Radiative transitions of the helium atom in highly magnetized neutron star atmospheres

    Full text link
    Recent observations of thermally emitting isolated neutron stars revealed spectral features that could be interpreted as radiative transitions of He in a magnetized neutron star atmosphere. We present Hartree-Fock calculations of the polarization-dependent photoionization cross sections of the He atom in strong magnetic fields ranging from 10^12 G to 10^14 G. Convenient fitting formulae for the cross sections are given as well as related oscillator strengths for various bound-bound transitions. The effects of finite nucleus mass on the radiative absorption cross sections are examined using perturbation theory.Comment: 14 pages, 7 figures. Minor changes. MNRAS in pres

    Electrodynamics of Magnetars III: Pair Creation Processes in an Ultrastrong Magnetic Field and Particle Heating in a Dynamic Magnetosphere

    Full text link
    We consider the details of the QED processes that create electron-positron pairs in magnetic fields approaching and exceeding 10^{14} G. The formation of free and bound pairs is addressed, and the importance of positronium dissociation by thermal X-rays is noted. We calculate the collision cross section between an X-ray and a gamma ray, and point out a resonance in the cross section when the gamma ray is close to the threshold for pair conversion. We also discuss how the pair creation rate in the open-field circuit and the outer magnetosphere can be strongly enhanced by instabilities near the light cylinder. When the current has a strong fluctuating component, a cascade develops. We examine the details of particle heating, and show that a high rate of pair creation can be sustained close to the star, but only if the spin period is shorter than several seconds. The dissipation rate in this turbulent state can easily accommodate the observed radio output of the transient radio-emitting magnetars, and even their infrared emission. Finally, we outline how a very high rate of pair creation on the open magnetic field lines can help to stabilize a static twist in the closed magnetosphere and to regulate the loss of magnetic helicity by reconnection at the light cylinder.Comment: 25 pages, submitted to the Astrophysical Journa

    Lentivector Transduction Improves Outcomes Over Transplantation of Human HSCs Alone in NOD/SCID/Fabry Mice

    Get PDF
    Fabry disease is a lysosomal storage disorder caused by a deficiency of a-galactosidase A (a-gal A) activity that results in progressive globotriaosylceramide (Gb(3)) deposition. We created a fully congenic nonobese diabetic (NOD)/severe combined immunodeficiency (SCID)/Fabry murine line to facilitate the in vivo assessment of human cell-directed therapies for Fabry disease. This pure line was generated after 11 generations of backcrosses and was found, as expected, to have a reduced immune compartment and background a-gal A activity. Next, we transplanted normal human CD34(+) cells transduced with a control (lentiviral vector-enhanced green fluorescent protein (LV-eGFP)) or a therapeutic bicistronic LV (LV-a-gal A/internal ribosome entry site (IRES)/hCD25). While both experimental groups showed similar engraftment levels, only the therapeutic group displayed a significant increase in plasma a-gal A activity. Gb(3) quantification at 12 weeks revealed metabolic correction in the spleen, lung, and liver for both groups. Importantly, only in the therapeutically-transduced cohort was a significant Gb(3) reduction found in the heart and kidney, key target organs for the amelioration of Fabry disease in humans.Fil: Pacienza, Natalia Alejandra. University Health Network; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yoshimitsu, Makoto. Kagoshima University; Japón. University Health Network; CanadáFil: Mizue, Nobuo. University Health Network; CanadáFil: Au, Bryan C. Y.. University Health Network; CanadáFil: Wang, James C. M.. University Health Network; CanadáFil: Fan, Xin. University Health Network; CanadáFil: Takenaka, Toshihiro. Kagoshima University; JapónFil: Medin, Jeffrey A. University Health Network; Canadá. University of Toronto; Canad

    Probing the Crust of the Neutron Star in EXO 0748-676

    Get PDF
    X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent thermal emission that can be attributed to cooling of the accretion-heated neutron star crust. In this work, we report on new Chandra and Swift observations that extend the quiescent monitoring to ~5 yr post-outburst. We find that the neutron star temperature remained at ~117 eV between 2009 and 2011, but had decreased to ~110 eV in 2013. This suggests that the crust has not fully cooled yet, which is supported by the lower temperature of ~95 eV that was measured ~4 yr prior to the accretion phase in 1980. Comparing the data to thermal evolution simulations reveals that the apparent lack of cooling between 2009 and 2011 could possibly be a signature of convection driven by phase separation of light and heavy nuclei in the outer layers of the neutron star.Comment: 9 pages, 4 tables, 3 figures. Minor revisions according to referee report. Accepted to Ap

    XMM-Newton Observations of Radio Pulsars B0834+06 and B0826-34 and Implications for Pulsar Inner Accelerator

    Full text link
    We report the X-ray observations of two radio pulsars with drifting subpulses: B0834 + 06 and B0826 - 34 using \xmm\. PSR B0834 + 06 was detected with a total of 70 counts from the three EPIC instruments over 50 ks exposure time. Its spectrum was best described as that of a blackbody (BB) with temperature Ts=(2.0−0.9+2.0)×106T_s=(2.0^{+2.0}_{-0.9}) \times 10^6 K and bolometric luminosity of Lb=(8.6−4.4+14.2)×1028L_b=(8.6^{+14.2}_{-4.4}) \times 10^{28} erg s−1^{-1}. As it is typical in pulsars with BB thermal components in their X-ray spectra, the hot spot surface area is much smaller than that of the canonical polar cap, implying a non-dipolar surface magnetic field much stronger than the dipolar component derived from the pulsar spin-down (in this case about 50 times smaller and stronger, respectively). The second pulsar PSR B0826 - 34 was not detected over 50 ks exposure time, giving an upper limit for the bolometric luminosity Lb≤1.4×1029L_b \leq 1.4 \times 10^{29} erg s−1^{-1}. We use these data as well as the radio emission data concerned with drifting subpulses to test the Partially Screened Gap (PSG) model of the inner accelerator in pulsars.Comment: Accepted for publication by The Astrophysical Journa

    Electrodynamics of Magnetars IV: Self-Consistent Model of the Inner Accelerator, with Implications for Pulsed Radio Emission

    Full text link
    We consider the voltage structure in the open-field circuit and outer magnetosphere of a magnetar. The standard polar-cap model for radio pulsars is modified significantly when the polar magnetic field exceeds 1.8x10^{14} G. Pairs are created by accelerated particles via resonant scattering of thermal X-rays, followed by the nearly instantaneous conversion of the scattered photon to a pair. A surface gap is then efficiently screened by e+- creation, which regulates the voltage in the inner part of the circuit to ~10^9 V. We also examine the electrostatic gap structure that can form when the magnetic field is somewhat weaker, and deduce a voltage 10-30 times larger over a range of surface temperatures. We examine carefully how the flow of charge back to the star above the gap depends on the magnitude of the current that is extracted from the surface of the star, on the curvature of the magnetic field lines, and on resonant drag. The rates of different channels of pair creation are determined self-consistently, including the non-resonant scattering of X-rays, and collisions between gamma rays and X-rays. We find that the electrostatic gap solution has too small a voltage to sustain the observed pulsed radio output of magnetars unless i) the magnetic axis is nearly aligned with the rotation axis and the light of sight; or ii) the gap is present on the closed as well as the open magnetic field lines. Several properties of the radio magnetars -- their rapid variability, broad pulses, and unusually hard radio spectra -- are consistent with a third possibility, that the current in the outer magnetosphere is strongly variable, and a very high rate of pair creation is sustained by a turbulent cascade.Comment: 32 pages, submitted to the Astrophysical Journa
    • …
    corecore