7 research outputs found

    Levels of red blood cell fatty acids in patients with psychosis, their unaffected siblings, and healthy controls

    No full text
    Background: Two recent meta- Analyses showed decreased red blood cell (RBC) polyunsaturated fatty acids (FA) in schizophrenia and related disorders. However, both these meta- Analyses report considerable heterogeneity, probably related to differences in patient samples between studies. Here, we investigated whether variations in RBC FA are associated with psychosis, and thus may be an intermediate phenotype of the disorder. Methods: For the present study, a total of 215 patients (87% outpatients), 187 siblings, and 98 controls were investigated for multiple FA analyses. Based on previous studies, we investigated docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), arachidonic acid (AA), linoleic acid (LA), nervonic acid (NA), and eicasopentaenoic acid (EPA). On an exploratory basis, a large number of additional FA were investigated. Multilevel mixed models were used to compare the FA between the 3 groups. Results: Compared to controls, both patients and siblings showed significantly increased DHA, DPA, AA, and NA. LA was significantly higher in siblings compared to controls. EPA was not significantly different between the 3 groups. Also the exploratory FA were increased in patients and siblings. Conclusions: We found increased RBC FA DHA, DPA, AA, and NA in patients and siblings compared to controls. The direction of change is similar in both patients and siblings, which may suggest a shared environment and/or an intermediate phenotype. Differences between patient samples reflectin

    Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma

    No full text
    Esophageal adenocarcinoma (EAC) has a dismal prognosis, and survival benefits of recent multimodality treatments remain small. Cancer-associated fibroblasts (CAFs) are known to contribute to poor outcome by conferring therapy resistance to various cancer types, but this has not been explored in EAC. Importantly, a targeted strategy to circumvent CAF-induced resistance has yet to be identified. By using EAC patient-derived CAFs, organoid cultures, and xenograft models we identified IL-6 as the stromal driver of therapy resistance in EAC. IL-6 activated epithelial-to-mesenchymal transition in cancer cells, which was accompanied by enhanced treatment resistance, migratory capacity, and clonogenicity. Inhibition of IL-6 restored drug sensitivity in patient-derived organoid cultures and cell lines. Analysis of patient gene expression profiles identified ADAM12 as a noninflammation-related serum-borne marker for IL-6-producing CAFs, and serum levels of this marker predicted unfavorable responses to neoadjuvant chemoradiation in EAC patients. These results demonstrate a stromal contribution to therapy resistance in EAC. This signaling can be targeted to resensitize EAC to therapy, and its activity can be measured using serum-borne markers

    Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance

    Get PDF
    Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases. Crown Copyright (C) 2021 Published by Elsevier B.V.Peer reviewe

    Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance

    Full text link
    Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) inwastewater can potentially provide an earlywarning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA inwastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularlywhen the incidence of SARS-CoV-2 inwastewater is low. Corrective and confirmatory actionsmust be in place for inconclusive results or results diverging fromcurrent trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases
    corecore