49 research outputs found
Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats
rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of breaks in 45S rDNA, and this results in repeat loss. We identify the structural maintenance of chromosomes protein 5 (SMC5) as contributing to recombination-mediated repair of rDNA breaks. Together, our data demonstrate that SMC5-mediated recombination can lead to error-prone repair of 45S rDNA repeats, resulting in their loss and thereby reducing cellular viability
Photoactivation of MDM2 Inhibitors:Controlling Protein-Protein Interaction with Light
Selectivity remains a major challenge in anticancer therapy, which potentially can be overcome by local activation of a cytotoxic drug. Such triggered activation can be obtained through modification of a drug with a photoremovable protecting group (PPG), and subsequent irradiation in the chosen place and time. Herein, the design, synthesis and biological evaluation is described of a photoactivatable MDM2 inhibitor, PPG-idasanutlin, which exerts no functional effect on cellular outgrowth, but allows for the selective, noninvasive activation of antitumor properties upon irradiation visible light, demonstrating activation with micrometer, single cell precision. The generality of this method has been demonstrated by growth inhibition of multiple cancer cell lines showing p53 stabilization and subsequent growth inhibition effects upon irradiation. Light activation to regulate protein-protein interactions between MDM2 and p53 offers exciting opportunities to control a multitude of biological processes and has the potential to circumvent common selectivity issues in antitumor drug development
Cyclin G-associated kinase promotes microtubule outgrowth from chromosomes during spindle assembly
Peer reviewe
Glycerophosphodiesterase GDE2 Promotes Neuroblastoma Differentiation through Glypican Release and Is a Marker of Clinical Outcome
Neuroblastoma is a pediatric embryonal malignancy characterized by impaired neuronal differentiation. A better understanding of neuroblastoma differentiation is essential for developing new therapeutic approaches. GDE2 (encoded by GDPD5) is a six-transmembrane-domain glycerophosphodiesterase that promotes embryonic neurogenesis. We find that high GDPD5 expression is strongly associated with favorable outcome in neuroblastoma. GDE2 induces differentiation of neuroblastoma cells, suppresses cell motility, and opposes RhoA-driven neurite retraction. GDE2 alters the Rac-RhoA activity balance and the expression of multiple differentiation-associated genes. Mechanistically, GDE2 acts by cleaving (in cis) and releasing glycosylphosphatidylinositol-anchored glypican-6, a putative co-receptor. A single point mutation in the ectodomain abolishes GDE2 function. Our results reveal GDE2 as a cell-autonomous inducer of neuroblastoma differentiation with prognostic significance and potential therapeutic value.</p
Cohesin Releases DNA through Asymmetric ATPase-Driven Ring Opening
Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin's Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin's highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin's two ATPase sites. Tight regulation of DNA entrapment and release by the cohesin complex is crucial for its multiple cellular functions. Elbatsh et al. find that cohesin's release from DNA requires an activity associated with one of its ATPase sites, whereas both sites control cohesin's loading onto DNA
CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis
Basal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells. CIP2A was dispensable for normal mammary gland development and for unperturbed mitosis, but selectively essential for mitotic progression of DNA damaged cells. A direct interaction between CIP2A and a DNA repair scaffold protein TopBP1 was identified, and CIP2A inhibition resulted in enhanced DNA damage-induced TopBP1 and RAD51 recruitment to chromatin in mammary epithelial cells. In addition to its role in tumor initiation, and survival of BRCA-deficient cells, CIP2A also drove proliferative MYC and E2F1 signaling in basal-like triple-negative breast cancer (BL-TNBC) cells. Clinically, high CIP2A expression was associated with poor patient prognosis in BL-TNBCs but not in other breast cancer subtypes. Small-molecule reactivators of PP2A (SMAP) inhibited CIP2A transcription, phenocopied the CIP2A-deficient DNA damage response (DDR), and inhibited growth of patient-derived BLBC xenograft. In summary, these results demonstrate that CIP2A directly interacts with TopBP1 and coordinates DNAdamage-induced mitotic checkpoint and proliferation, thereby driving BLBC initiation and progression. SMAPs could serve as a surrogate therapeutic strategy to inhibit the oncogenic activity of CIP2A in BLBCs. Significance: These results identify CIP2A as a nongenetic driver and therapeutic target in basal-like breast cancer that regulates DNA damage-induced G2-M checkpoint and proliferative signaling.Peer reviewe
The Consensus Molecular Subtypes of Colorectal Cancer
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use -- https://www.nature.com/authors/policies/license.html#termsColorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMS) with distinguishing features: CMS1 (MSI Immune, 14%), hypermutated, microsatellite unstable, strong immune activation; CMS2 (Canonical, 37%), epithelial, chromosomally unstable, marked WNT and MYC signaling activation; CMS3 (Metabolic, 13%), epithelial, evident metabolic dysregulation; and CMS4 (Mesenchymal, 23%), prominent transforming growth factor β activation, stromal invasion, and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intra-tumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC - with clear biological interpretability - and the basis for future clinical stratification and subtype-based targeted interventions