8 research outputs found

    Brain clocks capture diversity and disparities in aging and dementia

    Get PDF
    Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (RÂČ = 0.37, FÂČ = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.</p

    Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations

    Get PDF
    Peer reviewe

    CaracterizaciĂłn de Jales Mineros y evaluaciĂłn de su peligrosidad con base en su potencial de lixiviaciĂłn

    No full text
    Se realizĂł una caracterizaciĂłn de un jal histĂłrico y uno reciente obtenidos en el distrito minero de Guanajuato. Los anĂĄlisis por ICP y AAS mostraron cantidades importantes de metales presentes en el siguiente orden de concentraciĂłn: 12,185 mg/kg de Fe, 509 mg/kg de Mn, 53 mg/kg de Zn, 20 mg/kg de Pb y 8 mg/Kg de Cr en el jal reciente y 11,676 mg/kg de Fe, 862 mg/kg de Mn, 53 mg/kg de Zn, 17 mg/kg de Pb y 12 mg/Kg de Cr en el jal histĂłrico. Los anĂĄlisis mineralĂłgicos mostraron que los jales estĂĄn constituidos mayoritariamente por cuarzo, calcita, covelita y, en menor proporciĂłn magnetita, fierro y zinc; ademĂĄs, muestran una ausencia total de materia orgĂĄnica y valores de pH que van de neutros a alcalinos. Las pruebas de lixiviaciĂłn indican que ninguno de los metales presentes puede lixiviar en porcentajes mayores al 0.4% por lo que no representan un riesgo ambiental en base a este criterio. La estabilidad de los metales presentes en las muestra estĂĄ relacionada con la naturaleza quĂ­mica de las muestras que les hace que sean poco lixiviables

    Ciencia OdontolĂłgica

    No full text
    Es para los integrantes de la Red de Investigación en Estomatología (RIE) una enorme alegría presentar el primero de una serie de 5 libros sobre casos clínicos, revisiones de la literatura e investigaciones. La RIE estå integrada por cuerpos académicos de la Universidad Autónoma del Estado de Hidalgo, Universidad Autónoma del Estado de México, Universidad Autónoma de Campeche y Universidad de Guadalajara

    Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations

    Get PDF
    Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (RÂČ = 0.37, FÂČ = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging
    corecore