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Abstract 111 

Brain clocks, which quantify discrepancies between brain age and chronological age, hold 112 

promise for understanding brain health and disease. However, the impact of multimodal diversity 113 

(geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap 114 

(BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 115 

Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, 116 

we developed a BAG deep learning architecture for functional magnetic resonance imaging 117 

(fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy 118 

controls, and individuals with mild cognitive impairment, Alzheimer’s disease, and behavioral 119 

variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, 120 

RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with 121 

frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors 122 

(pollution, health disparities) were influential predictors of increased brain age gaps, especially in 123 

LAC (R²=0.37, F²=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild 124 

cognitive impairment to Alzheimer’s disease was found. In LAC, we observed larger BAGs in 125 

females in control and Alzheimer’s disease groups compared to respective males. Results were 126 

not explained by variations in signal quality, demographics, or acquisition methods. Findings 127 

provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.  128 

 129 

 130 

 131 

 132 

 133 

 134 



   

 

   

 

Main  135 

The brain undergoes dynamic functional changes with age1-3. Accurately mapping the trajectory 136 

of these changes and how they relate to chronological age is critical for understanding the aging 137 

process, multilevel disparities4,5, and brain disorders1 such as the Alzheimer's disease continuum, 138 

which includes mild cognitive impairment (MCI), and related disorders like behavioral variant 139 

frontotemporal dementia (bvFTD) 6. Brain clocks or brain age models have emerged as 140 

dimensional, transdiagnostic metrics that measure brain health influenced by a range of factors7-141 

9, suggesting that they may be able to capture multimodal diversity10. Notably, underrepresented 142 

populations from Latin American countries (LAC) exhibit higher genetic diversity and distinct 143 

physical, social and internal exposomes11,12 that impact brain phenotypes4,13,14. Income and 144 

socioeconomic inequality15,16, high levels of air pollution17, limited access to timely and effective 145 

healthcare18, increased prevalence of communicable diseases19, rising prevalence of non-146 

communicable diseases19,20, and low education attaiment21,22, are determinants of brain health in 147 

LAC18. Thus, although measuring the brain age gap (BAG) could enhance our understanding of 148 

disease risk and its impact on accelerated aging23, there is a lack of research on brain age models 149 

in underrepresented populations with increased socioeconomic and health disparities18,24,25.  150 

 151 

Sex and gender differences emerge as critical factors influencing brain changes. Studies on 152 

atrophy in Alzheimer's disease continuum reveal a faster rate of brain atrophy in females than in 153 

males26. Moreover, country-level gender inequality is associated to sex differences in cortical 154 

thickness27. Structural gender inequality further impacts brain health, with adverse environments 155 

affecting dendritic branching and synapse formation28. However, no studies to date have explored 156 

the spectrum of brain age abnormalities, including the effects of demographic heterogeneity across 157 

geographical regions, sexes, and the continuum from brain health to disease. Further, most studies 158 



   

 

   

 

have been conducted with participants from the global north, resulting in a lack of generalization 159 

to underrepresented populations from LAC24,29-31.  160 

 161 

Multimodal machine learning studies show promise in brain aging23; however, most rely on 162 

structural MRI, overlooking brain network dynamics. Complex spatiotemporal dimensions can be 163 

tracked with spatial accuracy through functional magnetic resonance imaging (fMRI) and 164 

millisecond precision using electroencephalogram (EEG) 32. Given the complementary strengths 165 

of fMRI and EEG, it is crucial to cross-validate existing brain clock models using these 166 

techniques. However, no studies have simultaneously applied EEG and fMRI to replicate brain 167 

age effects. Additionally, standard machine learning approaches are less generalizable than deep 168 

learning methods33. Brain age indices has been restricted by the predominant use of MRI or PET, 169 

which are less accessible and affordable in LAC, leading to selection biases34.  EEG offers a 170 

solution due to its cost-effectiveness, portability, and ease of implementation in aging and 171 

dementia35,36. However, few studies have combined accessible techniques with deep learning to 172 

develop scalable brain age markers. The application of EEG is hindered by heterogeneity in 173 

recordings, electrode layouts, acquisition systems, processing pipelines, and small sample sizes37. 174 

These standardization challenges have impeded the integration of fMRI and EEG in extensive, 175 

multicenter brain age research. 176 

 177 

We adopted a framework to tackle diversity by including datasets from LAC and non-LAC 178 

regions (n = 5306), utilizing graph convolutional networks (GCN) to functional connectivity of 179 

fMRI and EEG signals. We hypothesized that, across fMRI and EEG imaging, models would 180 

accurately predict BAGs and be sensitive to the impacts of multimodal diversity, including 181 

geographical and sociodemographic effects, sex differences, health disparities, and exposome 182 



influences. By testing this hypothesis, we aimed to assess the effectiveness of high-order 183 

interactions and deep learning in predicting brain age differences across diverse and 184 

heterogeneous populations of healthy aging and neurocognitive disorders.  185 

186 

Results 187 

We employed resting-state fMRI (n = 2953) and EEG (n = 2353) signals separately to evaluate 188 

whether a deep-learning computational pipeline (Fig. 1) captures differences in brain aging across 189 

heterogeneous populations. We included fMRI data from 2953 participants from Argentina, Chile, 190 

Colombia, Mexico, and Peru (LAC) and the USA, China, and Japan (non-LAC). The EEG dataset 191 

involved 2353 participants from Argentina, Brazil, Chile, Colombia, and Cuba (LAC), and Greece, 192 

Ireland, Italy, Turkey, and the UK (non-LAC). Healthy controls, MCI, Alzheimer's disease, and 193 

bvFTD groups were included. We focused on the Alzheimer's disease and bvFTD as these 194 

conditions represent the most common late-onset and early-onset causes of dementia38,39. We 195 

included the Alzheimer's disease continuum, which encompasses MCI, to capture the prodromal 196 

stages of the disease39. Raw fMRI and EEG signals were preprocessed to remove artifacts and then 197 

normalized. Based on multivariate information theory, we calculated high-order interactions1. 198 

Weighted graphs were used as inputs for a graph convolutional deep learning network trained to 199 

200 

201 

202 

203 

204 

205 

predict brain age, employing one model for fMRI and another for EEG. 

BAG across LAC and non-LAC datasets 

We used the fMRI and EEG signals from the control’s datasets (i.e., LAC and non-LAC) to train 

and test brain-aging models. We employed 80% cross-validation with a 20% hold-out testing split. 

As shown in Figs. 2a and 3a, our models predicting brain age obtained adequate goodness of fit 

(fMRI: R2 = 0.52, p < 0.001, F2 = 1.07; EEG: R2 = 0.45, p < 0.001, F2 = 0.83). We implemented 

the Root Mean Square Error (RMSE) to evaluate models’ fit, obtaining acceptable brain age 206 



predictions (fMRI-RMSE = 7.24, EEG-RMSE = 6.45). For both, fMRI and EEG, the main 207 

predictive brain-regional features included hubs in frontoposterior networks (nodes in precentral 208 

gyrus, the middle occipital gyrus, and the superior and middle frontal gyri; Fig. 2a and 3a). 209 

Additional nodes for the fMRI model included the inferior frontal gyri, and the anterior and 210 

median cingulate and paracingulate gyri (Fig. 2a.). For EEG, key nodes also comprised the 211 

superior and inferior parietal gyri and the inferior occipital gyrus (Fig. 3a). Thus, for both fMRI 212 

and EEG the models showed an adequate fit and predictive performance, with key predictive 213 

features involving frontoposterior networks in the brain. 214 

215 

BAG in non-LAC datasets 216 

Using the same data split ratio, we trained and tested the models in non-LAC datasets. As shown 217 

in Figs. 2b and 3b, our models predicting brain age yielded considerable goodness of fit (fMRI: 218 

R2 = 0.40, p < 0.001, F2 = 0.67; EEG: R2 = 0.43, p < 0.001, F2 = 0.76). RMSE values were also 219 

adequate (fMRI-RMSE = 8.66; EEG-RMSE = 6.54). Mean Directional Errors (MDE) for fMRI 220 

and EEG were 0.69 and 1.07, respectively. For both fMRI and EEG, the main predictive features 221 

included hubs in frontoposterior networks including the superior frontal gyrus (dorsolateral), the 222 

precentral gyrus, and the middle occipital gyrus (Fig. 2b and 3b). Additional critical nodes for the 223 

fMRI model included the inferior and middle frontal gyri, and the anterior and median cingulate 224 

and paracingulate gyri (Fig. 2b). For EEG, key nodes also comprised the superior and inferior 225 

occipital gyri, and the superior parietal gyrus (Fig. 3b). In brief, models trained on non-LAC 226 

datasets exhibited strong fit values and predictive features as in the overall dataset analysis. 227 

BAG in LAC datasets  228 

When trained and tested in the LAC datasets (Figs. 2c and 3c), models demonstrated moderate 229 

goodness of fit indexes but were less precise, as indicated by higher RMSE values (fMRI = 11.91; 230 



   

 

   

 

EEG = 9.82). We observed increased positive biases in the MDE measures compared to the non-231 

LAC models (fMRI = 3.18; EEG = 5.34). Again, the main features involved frontoposterior 232 

networks. Common nodes for fMRI and EEG included the superior and middle occipital gyri, the 233 

superior and inferior parietal gyri, and the superior and middle frontal gyri (Fig. 2c and 3c). For 234 

EEG, the model also highlighted the precentral gyrus, and the inferior occipital gyrus (Fig. 3c). 235 

Thus, models trained on LAC datasets showed moderate fit and positive biases (older brain age) 236 

in frontotemporal nodes (fMRI and EEG), compared to non-LAC models. 237 

 238 

Cross-regional effects in model generalization  239 

We investigated the effects of cross-region training and testing with data from non-LAC and LAC. 240 

Training with non-LAC data and testing on LAC data led to biases predicting older brain ages 241 

than chronological ages as shown by positive MDE values (Figs. 2d and 3d; fMRI: MDE = 5.60, 242 

RMSE = 9.44; EEG: MDE = 5.24, RMSE = 7.23). On the contrary, training on LAC and testing 243 

on non-LAC resulted in negative age biases predicting younger brain age shown by the MDE 244 

(Figs. 2d and 3d; LAC/non-LAC fMRI: MDE = -2.52, RMSE = 8.41; LAC/non-LAC EEG: MDE 245 

= -2.34, RMSE = 5.69). Sex differences were observed in the BAG when training in the non-LAC 246 

and testing in LAC (Figs. 4a and 4b). Specifically, female participants in LAC exhibited a greater 247 

bias towards older brain age than males (fMRI: p = 0.04; EEG: p = 0.03). In conclusion, training 248 

with non-LAC data and testing on LAC data resulted in a bias towards predicting older brain ages, 249 

especially for female participants in LAC. 250 

 251 

Accelerated aging in MCI, Alzheimer's disease and bvFTD 252 

We investigated the effects of testing the controls-trained model (80%) on different subsamples, 253 

matched by age, sex, and education, from other groups (i.e., controls non-LAC, controls LAC, 254 



   

 

   

 

MCI, Alzheimer's disease, and bvFTD, Table 1). Permutation subsample analyses with 5000 255 

iterations revealed statistically significant BAGs between the non-LAC and LAC control groups 256 

(Figs. 4a and 4b, fMRI: p < 0.01; EEG: p < 1e-5). This difference was also observed for 257 

Alzheimer's disease in the fMRI dataset (p < 1e-5). Additionally, for fMRI, we found significant 258 

differences between controls from non-LAC and all clinical groups from the same region [MCI 259 

(p < 1e-5), Alzheimer's disease (p < 1e-5), and bvFTD (p < 1e-5)]. Similarly, for both fMRI and 260 

EEG, we observed significant differences between controls from LAC and all the clinical groups 261 

[fMRI: MCI (p < 1e-5), Alzheimer's disease (p < 1e-5), and bvFTD (p < 1e-5); EEG: MCI (p < 262 

1e-5), Alzheimer's disease (p < 1e-5), and bvFTD (p < 0.01)]. Across fMRI and EEG datasets, 263 

both LAC and non-LAC, we observed a gradient of increasing brain age from controls to MCI to 264 

Alzheimer's disease. The MCI groups significantly differed from Alzheimer's disease (fMRI and 265 

EEG: p < 1e-5) and bvFTD (fMRI: p < 1e-5; EEG: p < 0.01), with older brain ages for Alzheimer's 266 

disease and bvFTD. For the fMRI and EEG non-LAC datasets, the Alzheimer's disease group also 267 

showed an older brain age than the bvFTD group (p < 0.01). Thus, larger brain age gaps were 268 

observed in LAC compared to non- LAC groups and across clinical groups, with a gradient of 269 

increasing brain age from controls to MCI to dementia. 270 

 271 

Sex differences in neurocognitive disorders 272 

For fMRI, we analyzed the differences between male and female participants with the same 273 

diagnosis for the non-LAC and LAC datasets. There were no significant differences among groups 274 

from non-LAC datasets (Figs 4a and 4b). However, Alzheimer's disease females from LAC 275 

exhibited significantly greater BAGs compared to males (fMRI: p < 1e-3, EEG: p < 0.001). No 276 

other significant effects were observed. We conducted a supplementary analysis incorporating 277 

country-level gender inequality (GII indexes), sex, region (LAC vs. non-LAC), and individual 278 



   

 

   

 

neurocognitive status (HC vs. MCI, Alzheimer's disease, or bvFTD) as predictors of BAGs. The 279 

model demonstrated good performance (R² = 0.40, F² = 0.66, RMSE = 6.85, p < 1e-15) and all 280 

predictors were influential. Having a neurocognitive disorder and being a female living in 281 

countries with high gender inequality – particularly from LAC – were associated with higher 282 

BAGs (Extended Data Fig.1 and Supplementary Table 1). Overall, females with Alzheimer's 283 

disease from LAC exhibited significantly greater brain age gaps compared to males, influenced 284 

by high gender inequality in their countries. 285 

 286 

Exposome determinants of BAGs  287 

We employed gradient boosting regression models to explore the influence of physical and social 288 

exposomes, as well as disease disparity factors on BAGs. Predictors included aggregate country-289 

level measures of air pollution (PM2.5), socioeconomic inequality (GINI index), and burdens of 290 

communicable, maternal, prenatal, and nutritional conditions, and non-communicable diseases. 291 

We also leveraged the individual neurocognitive status (HC versus Alzheimer's disease, MCI, or 292 

bvFTD). We assessed predictors’ importance using a multi-method approach comprising 293 

permutation importance, mean decrease in impurity (MDI), and SHAP values (Fig. 4c). Across 294 

both LAC and non-LAC datasets, the models (R² = 0.41, F² = 0.71, RMSE = 6.76, F = 304.25, p 295 

< 1e-15) identified neurocognitive disorders (MCI, Alzheimer's disease, or bvFTD) and higher 296 

socioeconomic inequality (GINI index) as the most influential and consistent predictors of 297 

increased BAGs (Fig. 4c). High levels of pollution and burden of non-communicable and 298 

communicable diseases were also predictive of increased BAGs, albeit less impactful. Stratified 299 

models for LAC (R² = 0.37, F² = 0.59, RMSE = 6.9, F = 138.78, p < 1e-15) and non-LAC (R² = 300 

0.41, F² = 0.71, RMSE = 6.57, F = 135.91, p < 1e-15) also showed good performance, with 301 

neurocognitive disorders being the most influential predictor in both. In LAC, higher 302 



   

 

   

 

socioeconomic inequality was the second most consistent and influential predictor of larger BAGs 303 

across the three models. Air pollution and burden of communicable and non-communicable 304 

diseases were also influential. None of these variables was influential predictors in the non-LAC 305 

models. Predictors’ estimation coefficients are presented in Supplementary Table 2. In sum, 306 

neurocognitive disorders, followed by macrosocial factors linked to socioeconomic inequality, air 307 

pollution, and health disparities, were influential predictors of increased brain age gaps, especially 308 

in LAC. 309 

 310 

Sensitivity analyses 311 

We performed multiple tests to assess the validity of the results. First, we investigate whether 312 

variations in fMRI or EEG data quality explained the differences in brain age between the non-313 

LAC and LAC. Subsample permutation tests with 5000 iterations showed no significant 314 

differences between any of the groups for fMRI (Fig. 5a) or EEG (Fig. 5b) data quality metrics. 315 

In addition, a linear regression examining scanner type effects showed that the fMRI data quality 316 

metric did not predict the BAGs (R2 = 0.001, p = 0.18, Cohen’s F2 = 0.001, Fig. 5c). To further 317 

test for scanner effects, we implemented a harmonization strategy by normalizing the BAG 318 

variable within each scanner type. We used the min-max scaler to ensure consistent minimum and 319 

maximum values across scanners. Results using this harmonization (Fig. 5d) and our initial 320 

approach were very similar. Additional analyses controlling for datasets collected with eyes open 321 

versus eyes closed protocols revealed no significant differences in BAGs across any groups 322 

(Extended Data Fig. 2). 323 

 324 

We also controlled for effects of age and years of education on fMRI and EEG BAGs by including 325 

them as covariates in the group comparisons. All reported group differences remained significant 326 



   

 

   

 

after covariate adjustment (Supplementary Table 3). Years of education did not change the results 327 

for any analyses. In eight of the nine analyses, age did not have a significant effect. Considering 328 

the chronological age differences between Alzheimer's disease and MCI groups, we performed a 329 

sensitivity analysis using a subset of MCI participants (fMRI: n = 254, mean age = 73.287 +/- 330 

7.517; EEG: n = 52, mean age = 63.231 +/- 6.549) age matched to Alzheimer's disease participants 331 

(fMRI: n = 254, mean age = 72.295 +/- 7.530, p = 0.13; EEG: n = 52, mean age = 62.769 +/- 332 

6.302, p = 0.71). These results (Extended Data Fig. 3) confirmed those reported for the overall 333 

MCI and Alzheimer's disease datasets (Figs. 4a and 4b). For both fMRI and EEG datasets, we 334 

found significantly larger BAGs in Alzheimer's disease compared to MCI (fMRI: p < 1e-5; EEG: 335 

p < 0.01). For fMRI, these differences were observed in both LAC (p < 1e-5) and non-LAC (p < 336 

1e-5) datasets. We also found differences between MCI participants from LAC vs. non-LAC (p < 337 

1e-5) and Alzheimer's disease participants from LAC vs. non-LAC (p < 1e-5).  Thus, controlling 338 

for data quality, scanner effects, age, and education confirmed that the reported effects in brain 339 

age gaps remained the same. 340 

 341 

Discussion 342 

Our study used brain clocks to capture diversity and disparity across LAC and non-LAC datasets 343 

using fMRI and source-space EEG techniques. Despite heterogeneity in signal acquisition and 344 

methods, we captured patterns of brain age modulations in healthy aging from diverse datasets 345 

and participants with MCI, Alzheimer’s disease, and bvFTD. Models trained and tested on non-346 

LAC data showed greater convergence with chronological age. Conversely, models applied to 347 

LAC datasets indicated larger BAGs, suggesting accelerated aging. We observed a gradient of 348 

BAGs from controls to MCI to Alzheimer's disease. Sex differences revealed an increased BAG 349 

in females in control and Alzheimer's disease groups. Most brain clock patterns were 350 



   

 

   

 

independently confirmed and replicated across fMRI and EEG. Aggregate-level macrosocial 351 

factors, including socioeconomic inequality, pollution, and burden of communicable/non-352 

communicable conditions modulated the BAG, especially in LAC. Variations in signal quality, 353 

demographics, or acquisition methods did not account for the results. The findings offer a 354 

framework that captures the multimodal diversity associated with accelerated aging in various 355 

global settings. 356 

 357 

Our results suggest that being from LAC is associated with accelerated aging. The better fit of the 358 

non-LAC compared to the LAC models supports the notion that universal models of brain 359 

phenotypes do not generalize well to underrepresented populations24,29,40. Diversity-related factors 360 

associated with different exposome and disease disparities4,10,24,41 may influence the BAGs in 361 

LAC and non-LAC. Neurocognitive disorders played a crucial role4,42. However, structural 362 

socioeconomic inequality, a distinctive characteristic of LAC15, increased levels air pollution43, 363 

and the burden of non-communicable19,20 and communicable18,44 diseases also have an significant 364 

impact on BAGs. The fact that these effects were larger in LAC suggests that underlying 365 

inequalities and adverse environmental and health conditions play a macrosocial, structural 366 

driving role11 in the observed regional differences. Immigration may also influence brain age 367 

through social determinants of health45 and genetic diversity. In LAC, tricontinental admixtures 368 

lead to significant ancestral diversity within and across countries46, impacting dementia 369 

prevalence and brain phenotypes41. Future studies should consider these potential effects in BAGs. 370 

 371 

Selective brain networks were associated with larger BAG in the clinical groups. Both fMRI and 372 

EEG models of BAGs yielded large-scale frontoposterior high-order interactions1, consistent with 373 

models of brain age involving long-range connections between frontal, cingular, parietal, and 374 



   

 

   

 

occipital hubs, which may be more vulnerable to aging effects47-49. Also consistent with the 375 

cumulative nature of neurobiological changes over time50, BAGs increased from controls through 376 

MCI to Alzheimer’s disease. A previous deep learning study using MRI and PET in participants 377 

with MCI and dementia also indicated increased brain age associated with disease progression23. 378 

Our results point to the brain age of MCI as being an intermediate stage between healthy aging 379 

and dementia39, and suggest that both fMRI and EEG markers of brain age may help identify 380 

groups at greater risk of progressing to dementia.  381 

 382 

Sex and gender have been linked to poorer brain health outcomes27,51. Larger BAGs in controls 383 

and Alzheimer's disease females from LAC may relate to sex-specific conditions such as 384 

menopause, which involves brain volume reduction and increased amyloid-beta deposition52,53. 385 

Females also exhibit disproportionate tau brain burden54, pronounced inflammatory 386 

dysregulation55 and lower basal autophagy56, all of which increase Alzheimer's disease risk. Such 387 

sex-specific factors are intertwined with environmental factors and gender inequalities51. Females 388 

in countries with higher gender inequality exhibit greater cortical atrophy27. Our sex effects were 389 

specific for Alzheimer's disease and LAC, consistent with the impacts of environmental41 versus 390 

genetic risks57 in Alzheimer's disease and bvFTD, respectively. Despite advances in gender 391 

equality, women in LAC still face significant obstacles58 including lower education, less income 392 

and healthcare access, and greater caregiving burden, potentially exacerbating brain health issues 393 

and Alzheimer's disease risk59,60. Previous models for brain age have been conducted 394 

predominantly in high-income settings, ignoring sex and gender differences triggered by region-395 

specific influences30,31.  Thus, the inclusion of diverse samples can help to better understand the 396 

biological and environmental interaction of sex and gender disparities. 397 



   

 

   

 

Our study had different strengths. We used diverse datasets across LAC and non-LAC including 398 

15 countries, featuring large sample sizes, and replicated results across fMRI and EEG. 399 

Geographical and sex differences modulated brain clocks across fMRI and EEG models, with 400 

more accelerated aging observed in controls and Alzheimer's disease females from LAC, 401 

contributing to the understanding of the effects of sex and diversity in aging. We used an 402 

integrative approach to analyze fMRI and EEG data across a large and geographically diverse 403 

sample. The convergence of two neuroimaging techniques and population heterogeneity enhanced 404 

the generalizability of our findings, making a significant contribution to computational models 405 

that capture diversity10. Brain clocks based on high-order interactions capture many risks to brain 406 

health, and thus, offer a new approach to personalized medicine, particularly for underrepresented 407 

populations. Our framework combines multiple dimensions of diversity in brain health, the 408 

Alzheimer's disease continuum and related disorders within a single measure of brain clocks, 409 

which is relevant for global health policies, generalizable computational models, and public health 410 

strategies. Incorporating EEG offers affordable and scalable solutions for disadvantaged settings, 411 

such as those in LAC, compared to traditional neuroimaging techniques1,35. Accessible metrics of 412 

accelerated aging can offer personalized assessments of diversity, aging, and neurocognitive 413 

disorders.  414 

 415 

This study has multiple limitations. Our EEG dataset lacks representation from clinical groups in 416 

non-LAC, which may limit the generalizability. This issue is partially mitigated by the consistent 417 

results from the fMRI data, which included MCI, Alzheimer's disease, and bvFTD groups from 418 

both regions. Our BAG approach is unimodal. Future research should adopt multimodal 419 

approaches to deepen our understanding of brain aging across different pathophysiological 420 

mechanisms1.  We leveraged two independent training and test datasets with fMRI and EEG, with 421 



   

 

   

 

out-of-sample validation yielding consistent results across geographical comparisons, sex effects, 422 

and clinical conditions. These datasets involve multimodal settings and recording parameters, 423 

suggesting that our results are strong across highly variable conditions. However, future research 424 

should include more regions to further validate and strengthen our findings. Additionally, we did 425 

not include individual-level data on gender identity, socioeconomic status, and ethnic 426 

stratification. Future research incorporating these variables could further enrich our understanding 427 

of brain age across diverse populations. Lastly, the sex differences observed between controls 428 

from LAC and non-LAC exhibited moderate effect sizes. Further research should assess sex 429 

differences in other regions. 430 

 431 

In conclusion, brain clock models were sensitive to the impact of multimodal diversity involving 432 

geographical, sex, macrosocial, and disease-based factors from diverse populations, despite the 433 

heterogeneity in data acquisition and processing. Utilizing an deep learning architecture of the 434 

brain's high-order interactions1 across fMRI and EEG signals, combined with globally accessible 435 

and affordable data, our study paves the way for more inclusive tools to assess disparities and 436 

diversity in brain aging. These tools can be vital in identifying MCI, Alzheimer's disease and 437 

bvFTD risk factors, as well as to characterizing and staging disease processes. In the future, 438 

personalized medicine approaches could leverage models of BAGs to establish worldwide 439 

protocols for aging and neurocognitive disorders. 440 
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Table 1. Demographics for fMRI and EEG datasets 468 
Full dataset 

All participants 

n = 5306 

HCs 

= 3509 

MCI 

= 517 

AD 

= 828 

bvFTD 

= 463 

  

fMRI dataset 

Variable HCs 

Non-LAC  

n = 967 

LAC  

n = 477 

MCI 

Non-LAC  

n = 215 

LAC  

n = 169 

AD 

Non-LAC  

n = 214 

LAC  

n = 505 

bvFTD 

Non-LAC  

n = 190 

LAC  

n = 216 

Statistics 

Non-LAC 

 vs. LAC 

 

Post-hoc  

comparisons 

Sex 

(F:M) 

Non-LAC 470:497 114:101 112:102 98:92 χ2 = 2.19 

p = 0.533 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

LAC 261:216 84:85 262:243 105:111 χ2 = 2.76 

p = 0.429 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

Age  

(years) 

 

Range:  

[22-91] 

Non-LAC 53.55  

(13.43) 

59.62  

(8.77) 

76.59  

(9.35) 

73.14 

(8.56) 

F = 3.13 

p = 0.47 

np2 = 0.02 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

LAC 65.34  

(11.44) 

66.53  

(8.18) 

77.52  

(9.35) 

73.15 

(8.76) 

F = 3.62 

p = 0.45 

np2 = 0.02 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

Years of  

Education 

 

Range:  

[0 - 25] 

Non-LAC 13.15  

(5.41) 

14.15  

(3.41) 

13.12  

(5.34) 

11.16  

(3.56) 

F = 2.19 

p = 0.49 

np2 = 0.02 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

LAC 12.11  

(3.39) 

11.52  

(6.32) 

 

8.89  

(4.34) 

7.89 

(3.36) 

F = 1.31 

p = 0.68 

np2 = 0.01 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

EEG dataset 

  HCs 

Non-LAC 

n = 569 

LAC  

n = 1486 

MCI 

LAC  

n = 133 

AD 

LAC  

n = 108 

bvFTD 

LAC  

n = 57 

Statistics 

Non-LAC 

 vs. LAC 

 

Post-hoc  

comparisons 

Sex 

(F:M) 

Non-LAC 470:99 - - - χ2 = 64.62 

p < 0.001* 

- 

 LAC 954:532 111:22 85:23 39:18 χ2 = 28.05 

p < 0.001* 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

Age  

(years) 

 

Range:  

[21-92] 

Non-LAC 58.98  

(12.03) 

- - - t = 4.21 

p = 0.07 

np2 = 0.02 

- 

LAC 66.74  

(13.94) 

62.54 

(9.98) 

78.62 

(8.34) 

71.05 

(9.34) 

F = 7.62 

p < 0.001* 

np2 = 0.07 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 

Years of education 

 

Range:  

[0 - 24] 

Non-LAC 14.85 (4.91) - - - t = 3.54 

p = 0.08 

np2 = 0.01 

- 

LAC 13.92 

(3.39) 

8.12 

(4.34) 

10.75 

(6.32) 

14.38 

(5.49) 

F = 6.31 

p < 0.001* 

np2 = 0.06 

HC-MCI: p > 0.05 

HC-AD: p > 0.05 

HC-bvFTD: p > 0.05 
Results are presented as mean (SD). Asterisks (*) indicate an alpha level of p < 0.05. Demographic data comparing non-LAC and LAC 469 
groups were assessed using unpaired t-tests, while data for pathological groups were analyzed using ANOVAs followed by Tukey post-hoc 470 
pairwise comparisons, except for sex, which was analyzed using Pearson's chi-squared (χ²) test. Effect sizes were calculated using partial eta 471 
squared (ηp²). Abbreviations: HC = healthy control, MCI = mild cognitive impairment, AD = Alzheimer's disease, bvFTD = behavioral 472 
variant frontotemporal dementia. 473 
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 475 

Figure legends 476 

 477 

Fig. 1. Datasets characterization and analysis pipeline. Datasets included Latin American 478 

countries (LAC) and non-LAC healthy controls (HC, total N = 3509) and participants with 479 

Alzheimer’s disease (AD, total N = 828), behavioral variant frontotemporal dementia (bvFTD, 480 

total N = 463), and mild cognitive impairment (MCI, total N = 517). The functional magnetic 481 

resonance imaging dataset (fMRI, yellow lines) included 2953 participants from LAC (Argentina, 482 

Chile, Colombia, Mexico, and Peru) as well as non-LAC (the USA, China, and Japan). The 483 

electroencephalography dataset (EEG, blue lines) involved 2353 participants from Argentina, 484 

Brazil, Chile, Colombia, and Cuba (LAC) as well as Greece, Ireland, Italy, Turkey, and the UK 485 

(non-LAC). Circles represent the number of participants per group, scaled between the number of 486 

participants in the largest and smallest groups for each region to facilitate visualization. 487 

Line thickness represents the number of participants with fMRI (yellow lines) and EEG (blue 488 

lines) per country. The raw fMRI and EEG signals were preprocessed by filtering and artifact 489 

removal and the EEG signals were normalized to project them into source space. A parcellation 490 

using the automated anatomical labeling (AAL) atlas for both the fMRI and EEG signals was 491 

performed to build the nodes from which we calculated the high-order interactions using the Ω-492 

information metric. A connectivity matrix was obtained for both modalities, which was later 493 

represented by graphs. Data augmentation was performed only in the testing dataset. The graphs 494 

were used as input for a graph convolutional deep learning network (architecture shown in the last 495 

row), with separate models for EEG and fMRI. Finally, age prediction was obtained, and the 496 

performance was measured by comparing the predicted vs. the chronological ages. This figure was 497 

partially created using Biorender under Team license.  498 

 499 

Fig. 2. fMRI training and testing the deep learning model in different samples. (a) Ordinary 500 

least squares (OLS) regression comparing chronological age vs. predicted age with the feature 501 

importance list for training and testing in the whole sample. (b) Regression comparing 502 

chronological age vs. predicted age with the feature importance list for training and testing in the 503 

non-LAC dataset. (c) Regression comparing chronological age vs. predicted age with the feature 504 

importance list for training and testing in the LAC dataset. For (a), (b) and (c), data point colors 505 

indicate the kernel density estimation to provide a visual representation of the density of prediction 506 

errors across different values of chronological age. The bars show the brain region feature 507 

importance list in descending order, with ring plots and glass brain representations of the most 508 

important network-edge connections. (d) Histogram of the prediction error when training in non-509 

LAC dataset and testing in LAC dataset. (e) Violin plot of the distribution and statistical 510 

comparison of training and testing with different regions using a permutation test (5000 iterations). 511 

(f) Violin plot of the distribution and statistical comparison of testing the models on females and 512 

males using a permutation test (5000 iterations). LAC = Latin American countries. 513 

 514 

Fig. 3. EEG training and testing the deep learning model in different samples. (a) Ordinary 515 

least squares (OLS) regression comparing chronological age vs. predicted age with the feature 516 

importance list for training and testing in the whole sample. (b) Regression comparing 517 

chronological age vs. predicted age with the feature importance list for training and testing in the 518 

non-LAC dataset. (c) Regression comparing chronological age vs. predicted age with the feature 519 

importance list for training and testing in the LAC dataset. For (a), (b) and (c), data point colors 520 

indicate the kernel density estimation to provide a visual representation of the density of prediction 521 
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errors across different values of chronological age. The bars show the brain region feature 

importance list in descending order, with ring plots and glass brain representations of the most 

important network-edge connections. (d) Histogram of the prediction error when training in non-

LAC dataset and testing in LAC dataset. (e) Violin plot of the distribution and statistical 

comparison of training and testing with different regions using a permutation test (5000 iterations). 

(f) Violin plot of the distribution and statistical comparison of testing the models on females and 
males using a permutation test (5000 iterations). LAC = Latin American countries.

Fig. 4. Groups, sex, and macrosocial influences in BAGs. Violin plots for the distribution of 

prediction gaps for different groups and sex effects using (a) fMRI and (b) EEG datasets. The 

statistical comparisons were calculated using subsample permutation testing with 5000 iterations. 

(c) Associations between macrosocial and disease disparity factors with BAGs were assessed with 
a multi-method approach comprising SHAP values, feature importance (mean decrease in 
impurity, MDI), and permutation importance. Plots show the mean importance values for each 
method, along with their 99% confidence interval, as well as the average R-squared and Cohen's 
f². * = Significant predictors. Shaded bars indicate significance across the three methods. LAC = 
Latin American countries, HC non-LAC = Healthy controls from non-LAC, HC LAC = Healthy 
controls from LAC, MCI = mild cognitive impairment, AD = Alzheimer’s disease, bvFTD = 
behavioral variant frontotemporal dementia, M = Males. F = Females, * p < 0.05, ** p < 0.01, *** 
p < 0.001.

Fig. 5. Sensitivity analysis. Violin plots for the distribution of data quality metrics of (a) fMRI 

and (b) EEG datasets. Both panels indicate null results between groups in terms of data quality. 

(c) Linear regression effects of scanner type, evidencing that the fMRI data quality was not 
significantly associated with fMRI BAGs differences. (d) fMRI BAG differences across groups 
controlling for scanner differences. The statistical comparisons were calculated using subsample 
permutation testing with 5000 iterations. LAC = Latin American countries, HC = Healthy controls, 
MCI = mild cognitive impairment, AD = Alzheimer’s disease, bvFTD = behavioral variant 
frontotemporal dementia.

Extended Data Fig. 1. Associations of sex and gender inequality with BAGs. Multi-method 

approach comprising SHAP values, features and permutation importance. Plot shows the mean 

importance values for each method, along with their 99% confidence interval, as well as the 

average R-squared and Cohen's f². Having a neurocognitive disorder, being female, and living in 

countries with larger gender inequality (particularly from LAC), were associated with higher 

BAGs. LAC = Latin American countries. 

Extended Data Fig. 2. Prediction gaps between fMRI datasets with either eyes open or eyes 

closed protocols. No significant differences were observed between participants with open vs. 

closed eyes within the same groups (permutation test = 5000 iterations). * p < 0.05, ** p < 0.01, 

*** p < 0.001. LAC = Latin American countries, OE = open eyes, CE = closed eyes. 

Extended Data Fig. 3. BAGs between subsamples of mild cognitive impairment (MCI) and 

Alzheimer’s disease (AD) groups matched by chronological age. Results were similar to those 

reported for the total MCI and Alzheimer’s disease datasets in Figs. 4a and b (permutation test = 

5000 iterations).  567 

568 
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Methods 736 

The total dataset consisted of 5306 participants, with 2953 undergoing fMRI and 2353 EEG 737 

acquisitions. Of these, 3509 were controls, 517 had MCI, 828 Alzheimer's disease, and 463 738 

bvFTD. 739 

 740 

fMRI dataset 741 

The fMRI study involved 2953 participants from both non-LAC (USA, China, Japan) and LAC 742 

(Argentina, Chile, Colombia, Mexico, Peru), including 1444 healthy controls (HC). Two hundred 743 

fifteen participants met the Petersen criteria for MCI with a 24 MMSE cut-off value, 719 were 744 

diagnosed as probable AD61, and 402 fulfilled the diagnostic criteria for bvFTD62. LAC 745 

participants were recruited from the Multi-Partner Consortium to Expand Dementia Research in 746 

Latin America (ReDLat, with participants from Mexico, Colombia, Peru, Chile, and Argentina) 747 

63. Non-LAC participants were non-Latino individuals from ReDLat, the Alzheimer's Disease 748 

Neuroimaging Initiative (ADNI), and the Neuroimaging in Frontotemporal Dementia (NIFD) 749 

repository. The datasets were matched on sex, age, and years of education (Table 1). Sex 750 

information was determined by self-report. No information regarding gender was inquired. To 751 

ensure data reliability, we excluded subjects who reported a history of alcohol/drug abuse or 752 

psychiatric or other neurological illnesses. No participants reported a history of alcohol/drug 753 

abuse, psychiatric, or other neurological illnesses.  754 

 755 

EEG dataset 756 

The total dataset involved 2353 participants. Controls comprised 1183 participants, including 737 757 

from non-LAC (Turkey, Greece, Italy, United Kingdom, and Ireland) and 446 from LAC (Cuba, 758 

Colombia, Brazil, Argentina, and Chile). The participants presenting with clinical conditions were 759 



   

 

   

 

recruited from a multisite study with harmonized assessments25,36,63 in LAC (Argentina, Brazil, 760 

Chile, and Colombia). This dataset included 133 patients with MCI, 108 with Alzheimer's disease, 761 

and 57 with bvFTD. The controls datasets were matched on age, sex, and years of education 762 

concerning the clinical groups (MCI, Alzheimer's disease, and bvFTD) (Table 1). Sex information 763 

was determined by self-report. No information regarding gender was inquired. The Petersen 764 

criteria defined the MCI group with a 24 MMSE cut-off value. All individuals with Alzheimer's 765 

disease met the criteria for probable disease following international diagnostic guidelines61. The 766 

bvFTD group met the diagnostic criteria for probable bvFTD62. No subject in any of the clinical 767 

conditions reported a history of alcohol/drug abuse, psychiatric, or other neurological illnesses.  768 

 769 

Ethics approval 770 

The local institutions that contributed EEGs and/or fMRIs to this study approved the acquisitions 771 

and protocols (Supplementary Data S1), and all participants signed a consent form following the 772 

declaration of Helsinki. The overall study was approved by the consortium under multiple IRBs 773 

(FWA00028264, FWA00001035, FWA00028864, FWA00001113, FWA00010121, 774 

FWAA00014416, FWA00008475, FWA00029236, FWA00029089, and FWA00000068). Data 775 

collection and analysis posed no risks concerning stigmatization, incrimination, discrimination, 776 

animal welfare, environmental, health, safety, security, or personal concerns. No transfer of 777 

biological materials, cultural artifacts, or traditional knowledge occurred. The authors reviewed 778 

pertinent studies from all countries while preparing the manuscript.  779 

 780 

fMRI preprocessing 781 

The images were obtained from different scanners and in distinct acquisition settings 782 

(Supplementary Table 4). We included two resting-state recordings, closed and open eyes, to 783 



   

 

   

 

increase the sample size for rs-fMRI data. The type of resting-state recording was controlled by a 784 

dummy variable (open or closed eyes) when employing the functional connectivity metric64. The 785 

resting state of fMRI preprocessing was conducted using the fmriprep toolbox (version 22.0.2). 786 

Furthermore, additional preprocessing was performed using the toolbox CONN2264. The CONN 787 

toolbox preprocessing included smoothing with a Gaussian kernel of 6 x 6 x 6 mm, the signal 788 

denoising through linear regression to account for confounding effects of white matter, 789 

cerebrospinal fluid, realignment, and scrubbing. A band-pass filter (0.008-0.09) Hz was also 790 

applied. After time-series preprocessing, we employed region-of-interest (ROI) analysis based on 791 

the brain regions of the Automated Anatomical Labeling (AAL90) atlas to reduce the 792 

dimensionality of the fMRI data for machine learning algorithms.  793 

 794 

EEG preprocessing 795 

EEGs were processed offline using procedures implemented in a custom, automatic pipeline for 796 

computing brain functional connectivity in the EEG using a mesh model for multiple electrode 797 

arrays and source space estimation (see Supplementary Table 5 for acquisition parameters). The 798 

pipeline allows for the multicentric assessment of rsEEG connectivity and has been validated in a 799 

large-scale evaluation of connectivity in dementia65. Recordings were re-referenced to the average 800 

reference and band-pass filtered between 0.5 and 40 Hz using a zero-phase shift Butterworth filter 801 

of order 8. Data were downsampled to 512 Hz, referenced using the reference electrode 802 

standardization technique (REST), and corrected for cardiac, ocular, and muscular artifacts using 803 

two methods based on Independent Component Analysis (ICA).  ICLabel (a tool for classifying 804 

EEG independent components into signals and different noise categories) 66, and EyeCatch (a tool 805 

for identifying eye-related ICA scalp maps) were used67. Data were visually inspected after 806 



   

 

   

 

artifact correction, and malfunctioning channels were identified and replaced using weighted 807 

spherical interpolations.  808 

 809 

EEG normalization: Following guidelines for multicentric studies37, EEG was rescaled to reduce 810 

cross-site variability. The normalization was carried out separately for each dataset and consisted 811 

of the Z-score transformation of the EEG time series. The Z-score describes the position of raw 812 

data in terms of its distance from the mean when measured in standard deviation units. The Z-813 

score transformed EEG connectivity matrices display more prominent interhemispheric 814 

asymmetry and reinforced long-distance connections than unweighted connectivity 815 

representations65. 816 

 817 

EEG source space estimation: The source analysis of the rsEEG was conducted using the 818 

standardized Low-Resolution Electromagnetic Tomography method (sLORETA). sLORETA 819 

allows estimating the standardized current density at each of the predefined virtual sensors located 820 

in the cortical gray matter and the hippocampus of a reference brain (MNI 305, Brain Imaging 821 

Centre, Montreal Neurologic Institute) based on the linear, weighted sum of a particular scalp 822 

voltage distribution or the EEG cross-spectrum at the sensor level. sLORETA is a distributed EEG 823 

inverse solution method based on an appropriate standardized version of the minimum norm 824 

current density estimation. sLORETA overcomes problems intrinsic to the estimation of deep 825 

sources of EEG and provides exact localization to test seeds, albeit with a high correlation between 826 

neighboring generators. 827 

 828 

The different electrode layouts were registered onto the scalp MNI152 coordinates. A signal-to-829 

noise ratio of 1 was chosen for the regularization method used to compute the sLORETA 830 



   

 

   

 

transformation matrix (forward operator for the inverse solution problem). The standardized 831 

current density maps were obtained using a head model of three concentric spheres in a predefined 832 

source space of 6242 voxels (voxel size = 5mm3) of the MNI average brain. A brain segmentation 833 

of 82 anatomic compartments (subcortical and cortical areas) was implemented using the 834 

automated anatomical labeling (AAL90) atlas. Current densities were estimated for the 153600 835 

voltage distributions comprising the five minutes of rsEEG (sampled at 512 Hz). The voxels 836 

belonging to the same AAL region were averaged such that a single (mean) time series was 837 

obtained for each cortical region32,68,69. 838 

 839 

High-order interactions 840 

After preprocessing 82 time-series from the AAL brain parcellation for each modality (fMRI and 841 

EEG), we calculated the high-order interactions across triplets composed of a region i and region 842 

j and a set comprising all the brain regions without i and j. To this end, we evaluated high-order 843 

interactions using the organizational information (𝛺) metric. It is a multivariate extension of 844 

Shannon's mutual information, which assesses the dominant characteristic of multivariate systems 845 

(i.e., high-order interactions). In this case, to operationalize the Shannon Entropy, we used the 846 

Gaussian copula approximation, which estimates the differential Shannon's entropy from the 847 

covariance matrix of the Gaussian copula transformed data70. This is a mixture of a parametric 848 

and a non-parametric approach, as the copula is preserved in a non-parametric way but is then 849 

used to generate Gaussian marginals. The Ω quantifies the balance between redundancy and 850 

synergy in high-order interactions among brain regions. By definition, Ω > 0 implies that the 851 

interdependencies are better described as shared randomness, indicating redundancy dominance. 852 

Conversely, Ω < 0 suggests that the interdependencies are better explained as collective 853 



   

 

   

 

constraints, indicating synergy dominance. After normalization, its magnitude ranges from -1 to 854 

1. The Ω can be expressed as:  855 

𝛺(𝑋𝑛) = (𝑛 − 2)𝐻(𝑋𝑛) + ∑[𝐻(𝑋𝑗) − 𝐻(𝑋−𝑗
𝑛 )]

𝑛

𝑗=1

 (1), 

where 𝑋𝑛 is the random vector that describes the system, and 𝐻 is the Shannon's entropy. When 856 

𝑛 is reduced to three variables (𝑥, 𝑦, and 𝑧), Ω can be expressed as 857 

𝛺(𝑥, 𝑦, 𝑧) = 𝐻(𝑥, 𝑦, 𝑧) − 𝐻(𝑥, 𝑦) − 𝐻(𝑥, 𝑧) − 𝐻(𝑦, 𝑧) + 𝐻(𝑥) + 𝐻(𝑦) + 𝐻(𝑧)     

(2). 

To analyze brain activity, 𝑧 can be considered a multivariate time series representing the activity 858 

of all brain regions except for 𝑥 and 𝑦. Therefore, 𝑂 𝑖𝑛𝑓𝑜 measures how synergistic or redundant 859 

is the relationship between two brain regions concerning the rest of the regions. 860 

 861 

Model input preprocessing 862 

As input to the models, the weighted adjacency matrix corresponding to the Ω metric was 863 

converted to a graph. This matrix defines the edges in the graph, where the weight of each edge 864 

reflects the Ω value between the corresponding regions. The feature vectors at each graph node 865 

are derived from the O-info matrix; specifically, each node's feature vector is the corresponding 866 

row in the Ω matrix. To this end, the connectivity matrices were first converted to tensors using 867 

the PyTorch deep learning library, enabling their efficient manipulation. Subsequently, these 868 

tensors were reshaped, organizing the connectivity data into a structure where each tensor 869 

represented the features of nodes within a graph. This transformation preserved the relational 870 

information from the original matrices, making it accessible for analysis by graph neural networks. 871 

To ensure the integrity of the data, graphs containing NaN values, either in their features or target 872 



   

 

   

 

values, were filtered out. The remaining graphs were then split into training and validation sets 873 

using a stratified split to ensure a balanced representation of age groups in both sets.  874 

Data augmentation 875 

We employed augmentation tailored for connectivity matrices to make the model more resilient 876 

to heterogeneity and generalizability. Linear interpolation between matrices corresponding to 877 

neighboring age values was used, in contrast to traditional image augmentation techniques such 878 

as random rotations or crops that are inappropriate for connectivity data.  879 

Given two matrices, M1 and M2, representing fMRI or EEG connectivity at ages a1 and a2, 880 

respectively, the interpolation to produce a matrix for a target age where a1 < at < a2 was conducted 881 

using the formula: 882 

𝑀𝑡 = (1 − 𝛼)𝑀1 +  𝛼𝑀2     (3) 883 

Here, 𝛼 =  
𝑎𝑡−𝑎1

𝑎2−𝑎1
 represents the interpolation factor. 884 

This augmentation method enabled the generation of fMRI and EEG connectivity matrices for age 885 

values previously absent in the data set. The derived matrices, through interpolation, ensure a 886 

smooth transition in the fMRI and EEG patterns from one age value to another, thereby 887 

maintaining the inherent physiological significance of the original data—preliminary validation 888 

against a hold-out dataset showed improvements in model fit against dataset heterogeneity. We 889 

included 500 samples with data augmentation only the training datasets for both modalities, half 890 

for the non-LAC and half for the LAC samples. 891 

 892 

The architecture of the models 893 

Two Graph Convolutional Networks (GCNs) 71 were designed for this study, specifically tailored 894 

to process graph-structured data. We employed the PyTorch Geometric code library based on the 895 

PyTorch library  to develop and train the models. Two models were created, one for the fMRI 896 



   

 

   

 

data and another for the EEG data. Unlike traditional convolutional networks suited for 897 

neuroimaging data, functional connectivity demands a specialized approach since neighboring 898 

data points are not necessarily close in native space (i.e., adjacent brain areas). The GCN employs 899 

adjacency matrices of graphs as inputs comprised of node features. Each node in the graph 900 

aggregates features from its neighbors through a series of operations, including multiplication by 901 

a normalized adjacency matrix, transformation using a weight matrix, and applying an activation 902 

function, here the ReLU72. The architecture employed in our work consisted of two Graph 903 

Convolutional layers. The input features (O-info matrix) were passed through the first 904 

convolutional layer, followed by a ReLU activation function and a dropout layer for 905 

regularization. The features were then passed through the second convolutional layer. Finally, 906 

average pooling was used to aggregate the output features. To train the two models, we combined 907 

Mean Squared Error (MSE) as the loss function and the Adam optimizer. Given the variability in 908 

the data and potential model configurations, we implemented a hyperparameter tuning process 909 

using a grid search over specified learning rates and epoch numbers. For each model for the 910 

controls, the data was initially split into 80% for training and validation, and 20% for hold-out 911 

testing. Within the 80% training and validation set, we applied 5-fold cross-validation to 912 

determine the optimal hyperparameters for the model. After determining the best hyperparameters 913 

through this cross-validation process, the final model's performance was evaluated on the 914 

remaining 20% hold-out test set to assess its generalization capability73.  915 

 916 

Statistical analyses 917 

Following hyperparameter tuning, each model was retrained using the best hyperparameters on 918 

the training set and evaluated on the test set. For a more comprehensive assessment, the predicted 919 

age values were compared to the actual age values using Pearson's correlation coefficient, R-920 



   

 

   

 

squared, and Cohen's f2 effect size for each model74. We used the method outlined below to 921 

evaluate if the model was predicting increased or decreased ages concerning the actual 922 

chronological age. 923 

 924 

The Mean Directional Error (MDE) is a diagnostic metric used to evaluate the prediction accuracy 925 

of the models, specifically focusing on the direction of prediction gaps rather than their magnitude 926 

to detect bias. It is calculated as follows: 927 

𝑀𝐷𝐸 =  
1

𝑛
 ∑ (𝑦𝑖 −  𝑦�̂�)

𝑛
𝑖=1        (4) 928 

The function "sign" yields a value of +1 if the prediction is above the actual value, -1 if below, 929 

and 0 if they are equal. yi is the real age of subject i and ŷi is the predicted age. An MDE value 930 

close to zero suggests a balanced number of overestimations and underestimations. Positive or 931 

negative values indicate systematic biases in the prediction method, where a positive MDE means 932 

the model generally overpredicts, and a negative MDE indicates underprediction. 933 

 934 

In our analysis when comparing models, we sought to examine potential regional biases in 935 

predictive accuracy and compare possible sex effects or signal acquisition noise. The statistical 936 

approach involved conducting permutation tests (5,000 subsample iterations each), a non-937 

parametric statistical test that does not assume a specific distribution of the data, thus offering 938 

flexibility in handling non-normal distributions. Given the nature of the permutation test, our 939 

analysis constituted two-sided tests, assessing the likelihood of observing the obtained difference 940 

under the null hypothesis of no difference between the models. While the permutation test 941 

alleviates the need for normality assumptions, making it resilient to deviations from normal 942 

distribution, it inherently addresses multiple comparison concerns by evaluating the empirical 943 

distribution of the test statistic under the null hypothesis. 944 



   

 

   

 

We compared the adequacy of the models employing the root mean square error (RMSE). This is 945 

a metric to quantify the discrepancies between predicted and observed values in modeling, given 946 

by the formula: 947 

 948 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖 −  𝑦�̂�)

2𝑛
𝑖=1           (6) 949 

 950 

In this equation, 𝑦𝑖 is the observed value, 𝑦�̂� is the predicted value, and 𝑁 is the total number of 951 

observations. RMSE measures the average magnitude of errors between predicted and actual 952 

observations. The squaring process results in a higher weight to outliers, making it a useful 953 

measure to evaluate if a model is robust to outliers.   954 

To evaluate feature importance, we employed bootstrapping to assess the significance of 955 

individual nodes (i.e., brain areas) and edges (i.e., connections between brain nodes/regions) 956 

within the graph neural network. With this approach, we executed a two-step process to quantify 957 

the node and its edge's impact on the model's predictions. Initially, the model’s output was 958 

calculated with all nodes and its edges present to establish a baseline performance metric. 959 

Subsequently, the analysis was repeated after removing each node and edge at a time, thus 960 

simulating network information absence. The difference in the model's output, with and without 961 

each area and edge was quantified, providing a measure of the network node importance. This 962 

process was repeated across multiple bootstrap testing dataset samples (n=5000) to calculate 963 

confidence intervals. Finally, a feature importance list of nodes was generated in descending order 964 

of importance for brain age prediction. This methodological framework allowed for an analysis 965 

of network-level contributions to each model's overall predictive performance. 966 

Gradient boosting regression models 967 



   

 

   

 

We used gradient boosting regression models75 to investigate the impact of factors associated with 968 

the physical and social exposomes, and disease disparities, on BAGs between LAC and non-LAC 969 

populations. As predictors, we included country-level measures of: (i) air pollution (PM2.5 970 

exposure), (ii) socioeconomic inequality (the GINI index) 76, (iii) the burden of communicable, 971 

maternal, prenatal, and nutritional conditions, and (iv) the burden of non-communicable diseases. 972 

These indicators were sourced from the updated country-specific data provided on the World 973 

Bank’s platform (https://databank.worldbank.org/). Additionally, individual neurocognitive status 974 

(being controls versus having Alzheimer’s disease, MCI, or bvFTD) was included as predictor. 975 

BAGs from fMRI and EEG datasets were the outcomes. 976 

 977 

Models were trained using 90% of the dataset and subsequently tested on an independent 10% 978 

subset, employing a 10-fold cross-validation framework. The cross-validation was repeated 10 979 

times. Within each iteration, estimation coefficients for the predictors, as well as the R-squared, 980 

Cohen's f²77, and RMSE, were computed. We assessed feature importance using a multi-method 981 

approach incorporating permutation importance, features importance based on the mean decrease 982 

in impurity (MDI), and SHAP values78. We provided the mean importance values for each 983 

method, along with their 99% confidence interval, as well as the average R-squared and Cohen's 984 

f²77. Features whose lower confidence interval boundary crosses zero are considered non-985 

significant. In order to optimize Ridge's hyperparameters, Bayesian optimization was employed.  986 

Following the same multi-method approach, we conducted gradient boosting regressions to 987 

explore the effect of gender inequality and sex on BAGs. As predictors, we included: (i) the 988 

country level gender inequality index (GII), a composite metric measuring reproductive health, 989 

empowerment and the labor market, (ii) sex, (iii) region (LAC vs non-LAC) and (iv) individual 990 



   

 

   

 

neurocognitive status (HC versus Alzheimer's disease, MCI, or bvFTD). BAGs from fMRI and 991 

EEG were the outcomes 992 

 993 

Data quality assessment  994 

For the fMRI overall data quality (ODQ) metric, each timeseries was segmented in 20 repetition 995 

time (TR) length to evaluate the temporal signal-to-noise ratio (tSNR) 79, which is calculated as 996 

the mean fMRI signal divided by its standard deviation within each segment. Segments with tSNR 997 

above a threshold of 50 were classified as high quality79. As additional evaluations to consider 998 

overall acquisition quality, we checked the variability of the tSNR segments of all the time series 999 

in the brain to check for spatial consistency. Lastly, we checked for remaining outliers as signal 1000 

spikes from movement or transient gradient artifacts. Thus, the fMRI ODQ was computed as a 1001 

percentage of good segments considering its tSNR, low spatial variability, and the number of 1002 

segments not having spikes from movement or transient gradient remaining artifacts. 1003 

For the EEG data quality assessment, we followed the method proposed by Zhao et al80. The EEG 1004 

signals were divided into 1-second segments, and the quality of each segment was evaluated using 1005 

four specific metrics. These metrics included the detection of weak or constant signals based on 1006 

standard deviation, the identification of artifacts through signal amplitude ratios, the presence of 1007 

high-frequency noise, and low correlation between channels. The EEG ODQ was then calculated 1008 

as the percentage of segments exhibiting good quality. A value of 0 indicated that all segments 1009 

were of poor quality, while a value of 100 indicated that all segments were of high quality. 1010 

 1011 

Sensitivity analyses 1012 

We examined whether variations in fMRI or EEG data quality explained the differences in brain 1013 

age between the non-LAC and LAC, comparing different groups’ fMRI79 and EEG80 data quality 1014 



   

 

   

 

metrics, with subsample permutation tests with 5000 iterations for each comparison. In addition, 1015 

we conducted a linear regression to examine the association between the fMRI data quality metrics 1016 

and the BAGs. To further control for scanner effects, we implemented an additional harmonization 1017 

strategy in the fMRI training dataset. This method involves normalizing the BAG variable within 1018 

each scanner type by scaling the data to a fixed range using the min-max scaler14. This ensures 1019 

that the minimum and maximum values of the BAG variable are consistent across different 1020 

scanners, thereby reducing variability due to scanner differences. Additionally, we accounted for 1021 

the sign of the BAG after normalization to maintain the interpretability of positive and negative 1022 

values. This procedure adjusts for location and scale differences (e.g., mean and variance) across 1023 

sites, minimizing scanner-related variability. 1024 

 1025 

We used permutation tests (5000 subsample iterations each) to compare the BAGs between 1026 

subsamples of participants undergoing fMRI with open versus closed eyes. We included 124 1027 

controls with closed eyes and 86 with open eyes, 269 Alzheimer's disease with closed eyes and 1028 

164 with open eyes, and 88 bvFTD with closed eyes and 69 with open eyes. Notably, all MCI 1029 

participants underwent fMRI with open eyes. Our findings revealed no significant differences in 1030 

BAGs when analyzing data from open versus closed eyes conditions across all group comparisons 1031 

(permutation test = 5000 iterations). 1032 

 1033 

Ethics and inclusion statement 1034 

This work involved a collaboration between researchers in multiple countries. Contributors from 1035 

different sites are included as coauthors according to their contributions. Researchers residing in 1036 

LMIC were involved in study design, study implementation, methodological procedure, writing 1037 

and reviewing processes. The current research is locally relevant due to the larger disparities 1038 



   

 

   

 

observed in LAC. Roles and responsibilities were agreed among collaborators ahead of the 1039 

research. Ethics committees approved all research involving participants. To prevent any 1040 

stigmatization, all identifying information has been removed to preserve the privacy of 1041 

individuals. We endorse the Nature Portfolio journals’ guidance on LMIC authorship and 1042 

inclusion. Authorship was based on the intellectual contribution, commitment, and involvement 1043 

of each researcher in this study. We included authors born in LMICs and other underrepresented 1044 

countries. 1045 

 1046 

Data availability 1047 

All preprocessed data are openly available at: https://osf.io/8zjf4/. The fMRI and EEG datasets 1048 

comprise sources (a) currently publicly available for direct download after registration and access 1049 

application, (b) available after contacting the researcher, or (c) accessible after IRB approval of 1050 

formal data-sharing agreement in a process that can last up to 12 weeks. The fMRI sources that 1051 

are publicly available for direct download are the following: Alzheimer's Disease Neuroimaging 1052 

Initiative (ADNI) (USA) (ida.loni.usc.edu/collaboration/access/appLicense.jsp), Chinese Human 1053 

Connectome Project (CHCP) (China) 1054 

(scidb.cn/en/detail?dataSetId=f512d085f3d3452a9b14689e9997ca94#p2), The frontotemporal 1055 

lobar degeneration neuroimaging initiative (FTLDNI) (USA) 1056 

(ida.loni.usc.edu/collaboration/access/appLicense.jsp), and Japanese Strategic Research Program 1057 

for the Promotion of Brain Science (SRPBS) (Japan) (bicr-resource.atr.jp/srpbsopen/). The fMRI 1058 

sources available after contacting the researcher include ReDLat USA by contacting Bruce Miller 1059 

at UCSF through datasharing@ucsf.edu. The fMRI sources that require IRB approval and a formal 1060 

data sharing agreement include: ReDLat pros (Argentina, Chile, Colombia, Mexico, Peru) by 1061 

contacting Agustín Ibañez at agustin.ibanez@gbhi.org, Centro de Gerociencia Salud Mental y 1062 

Metabolismo (GERO) (Chile) by contacting Andrea Slachevsky at andrea.slachevsky@uchile.cl, 1063 

https://osf.io/8zjf4/


   

 

   

 

ReDLat pre (Argentina) by contacting Agustín Ibañez at agustin.ibanez@gbhi.org, ReDLat pre 1064 

(Peru) by contacting Nilton Custodio at ncustodio@ipn.pe, ReDLat pre (Colombia) by contacting 1065 

Diana Matallana at dianamat@javeriana.edu.co, ReDLat pre (Colombia -II) by contacting Felipe 1066 

Cardona at felipe.cardona@correounivalle.edu.co, ReDLat pre (Mexico) by contacting Ana Luisa 1067 

Sosa at drasosa@hotmail.com, ReDLat pre (Chile) by contacting María Isabel Behrens at 1068 

behrensl@uchile.cl, and ReDLat pre (Chile) by contacting Andrea Slachevsky at 1069 

andrea.slachevsky@uchile.cl. The EEG sources that are publicly available for direct download 1070 

are Centro de Neurociencias de Cuba (CHBMP) (Cuba) 1071 

(www.synapse.org/Synapse:syn22324937). The EEG sources that are available after contacting 1072 

the researcher include BrainLat (Argentina) by contacting Agustina Legaz at 1073 

alegaz@udesa.edu.ar, BrainLat (Chile) by contacting Agustina Legaz at alegaz@udesa.edu.ar, 1074 

Izmir University of Economics (Turkey) by contacting Gorsev Gener at gorsev.yener@ieu.edu.tr, 1075 

Trinity College Dublin (Ireland) by contacting Francesca Farina at 1076 

francesca.farina@northwestern.edu, Universidad de Antioquia (Colombia) by contacting 1077 

Francisco Lopera at floperar@gmail.com, Universidad de Sao Paulo (Brazil) by contacting Mario 1078 

Parra at mario.parra-rodriguez@strath.ac.uk, Universidad de Roma La Sapienza (Italy) by 1079 

contacting Susana Lopez at susanna.lopez@uniroma1.it, University of Strathclyde (UK) by 1080 

contacting Mario Parra at mario.parra-rodriguez@strath.ac.uk, Istanbul Medipol University 1081 

(Turkey) by contacting Tuba Aktürk at takturk@medipol.edu.tr, and Takeda (Chile) by contacting 1082 

Daniela Olivares at danielaolivaresvargas@gmail.com. For additional details, see 1083 

Supplementary Data S1.  1084 

Code availability 1085 

The code used to preprocess and analyze the data of this work is available in an Open Science 1086 

Foundation repository at the following address: https://osf.io/8zjf4/ 1087 

https://osf.io/8zjf4/
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