202 research outputs found

    Gender Differences in Developing Biomarker-Based Major Depressive Disorder Diagnostics

    Get PDF
    The identification of biomarkers associated with major depressive disorder (MDD) holds great promise to develop an objective laboratory test. However, current biomarkers lack discriminative power due to the complex biological background, and not much is known about the influence of potential modifiers such as gender. We first performed a cross-sectional study on the discriminative power of biomarkers for MDD by investigating gender differences in biomarker levels. Out of 28 biomarkers, 21 biomarkers were significantly different between genders. Second, a novel statistical approach was applied to investigate the effect of gender on MDD disease classification using a panel of biomarkers. Eleven biomarkers were identified in men and eight in women, three of which were active in both genders. Gender stratification caused a (non-significant) increase of Area Under Curve (AUC) for men (AUC=0.806) and women (AUC=0.807) compared to non-stratification (AUC=0.739). In conclusion, we have shown that there are differences in biomarker levels between men and women which may impact accurate disease classification of MDD when gender is not taken into account

    The Importance of Small Fire Refugia in the Central Sierra Nevada, California, USA

    Get PDF
    Fire refugia – the unburned areas within fire perimeters – are important to the survival of many taxa through fire events and the revegetation of post-fire landscapes. Previous work has shown that species use and benefit from small-scale fire refugia (1 m2 to 1000 m2), but our understanding of where and how fire refugia form is largely limited to the scale of remotely sensed data (i.e., 900 m2 Landsat pixels). To examine the causes and consequences of small fire refugia, we field-mapped all unburned patches ≥1 m2 within a contiguous 25.6 ha forest plot that burned at generally low-to-moderate severity in the 2013 Yosemite Rim Fire, California, USA. Within the Yosemite Forest Dynamics Plot (YFDP), there were 685 unburned patches ≥1 m2, covering a total unburned area of 12,597 m2 (4.9%). Small refugia occurred in all fire severity classifications. Random forest models showed that the proportion of unburned area of 100 m2 grid cells corresponded to pre-fire density and basal area of trees, distance to the nearest stream, and immediate fire mortality, but the relationships were complex and model accuracy was variable. From a pre-fire population of 34,061 total trees ≥1 cm diameter at breast height (1.37 m; DBH) within the plot (1,330 trees ha-1), trees of all five of the most common species and those DBH \u3c30 cm had higher immediate survival rates if their boles were wholly or partially within an unburned patch (P ≤0.001). Trees 1 cm ≤ DBH \u3c10 that survived were located closer to the center of the unburned patch than the edge (mean 1.1 m versus 0.6 m; ANOVA; P ≤0.001). Four-year survival rates for trees 1 cm ≤ DBH \u3c10 cm were 58.8% within small refugia and 2.7% in burned areas (P ≤0.001). Species richness and the Shannon Diversity Index (SDI) were associated with unburned quadrats in NMDS ordinations 3 years post-fire. Burn heterogeneity in mixed-conifer forests likely exists at all scales and small refugia contribute to diversity of forest species and structures. Thus, managers may wish to consider scales from 1-m2 to the landscape when designing fuel reduction prescriptions. The partial predictability of refugia location suggests that further work may lead to predictive models of refugial presence that have considerable potential to preserve ecological function or human habitation in fire-frequent forests

    The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

    Get PDF
    Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations) in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the western United States.National Science Foundation (U.S.) (ATM- 0929282)National Science Foundation (U.S.) (ATM-0939021)National Science Foundation (U.S.) (ATM-0938940)United States. Dept. of Energy. Office of Scienc

    Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling

    No full text
    Drought has promoted large‐scale, insect‐induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on‐going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: 1) there is a trade‐off in tree carbon investment between primary and secondary metabolites (e.g. growth vs. defence); 2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and 3) implementing conifer‐bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large‐scale vegetation models, the under‐representation of insect‐induced tree mortality

    Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo

    Get PDF
    In single molecule localization-based super-resolution imaging, high labeling density or the desire for greater data collection speed can lead to clusters of overlapping emitter images in the raw super-resolution image data. We describe a Bayesian inference approach to multiple-emitter fitting that uses Reversible Jump Markov Chain Monte Carlo to identify and localize the emitters in dense regions of data. This formalism can take advantage of any prior information, such as emitter intensity and density. The output is both a posterior probability distribution of emitter locations that includes uncertainty in the number of emitters and the background structure, and a set of coordinates and uncertainties from the most probable model

    Behavioral modifications by a large-northern herbivore to mitigate warming conditions

    Get PDF
    Background: Temperatures in arctic-boreal regions are increasing rapidly and pose significant challenges to moose (Alces alces), a heat-sensitive large-bodied mammal. Moose act as ecosystem engineers, by regulating forest carbon and structure, below ground nitrogen cycling processes, and predator-prey dynamics. Previous studies showed that during hotter periods, moose displayed stronger selection for wetland habitats, taller and denser forest canopies, and minimized exposure to solar radiation. However, previous studies regarding moose behavioral thermoregulation occurred in Europe or southern moose range in North America. Understanding whether ambient temperature elicits a behavioral response in high-northern latitude moose populations in North America may be increasingly important as these arctic-boreal systems have been warming at a rate two to three times the global mean. Methods: We assessed how Alaska moose habitat selection changed as a function of ambient temperature using a step-selection function approach to identify habitat features important for behavioral thermoregulation in summer (June–August). We used Global Positioning System telemetry locations from four populations of Alaska moose (n = 169) from 2008 to 2016. We assessed model fit using the quasi-likelihood under independence criterion and conduction a leave-one-out cross validation. Results: Both male and female moose in all populations increasingly, and nonlinearly, selected for denser canopy cover as ambient temperature increased during summer, where initial increases in the conditional probability of selection were initially sharper then leveled out as canopy density increased above ~ 50%. However, the magnitude of selection response varied by population and sex. In two of the three populations containing both sexes, females demonstrated a stronger selection response for denser canopy at higher temperatures than males. We also observed a stronger selection response in the most southerly and northerly populations compared to populations in the west and central Alaska. Conclusions: The impacts of climate change in arctic-boreal regions increase landscape heterogeneity through processes such as increased wildfire intensity and annual area burned, which may significantly alter the thermal environment available to an animal. Understanding habitat selection related to behavioral thermoregulation is a first step toward identifying areas capable of providing thermal relief for moose and other species impacted by climate change in arctic-boreal regions.publishedVersio

    Observations and assessment of forest carbon dynamics following disturbance in North America

    Get PDF
    Disturbance processes of various types substantially modify ecosystem carbon dynamics both temporally and spatially, and constitute a fundamental part of larger landscape-level dynamics. Forests typically lose carbon for several years to several decades following severe disturbance, but our understanding of the duration and dynamics of post-disturbance forest carbon fluxes remains limited. Here we capitalize on a recent North American Carbon Program disturbance synthesis to discuss techniques and future work needed to better understand carbon dynamics after forest disturbance. Specifically, this paper addresses three topics: (1) the history, spatial distribution, and characteristics of different types of disturbance (in particular fire, insects, and harvest) in North America; (2) the integrated measurements and experimental designs required to quantify forest carbon dynamics in the years and decades after disturbance, as presented in a series of case studies; and (3) a synthesis of the greatest uncertainties spanning these studies, as well as the utility of multiple types of observations (independent but mutually constraining data) in understanding their dynamics. The case studies—in the southeast U.S., central boreal Canada, U.S. Rocky Mountains, and Pacific Northwest—explore how different measurements can be used to constrain and understand carbon dynamics in regrowing forests, with the most important measurements summarized for each disturbance type. We identify disturbance severity and history as key but highly uncertain factors driving post-disturbance carbon source-sink dynamics across all disturbance types. We suggest that imaginative, integrative analyses using multiple lines of evidence, increased measurement capabilities, shared models and online data sets, and innovative numerical algorithms hold promise for improved understanding and prediction of carbon dynamics in disturbance-prone forests

    Genomic analysis of diet composition finds novel loci and associations with health and lifestyle

    Get PDF
    We conducted genome-wide association study (GWAS) meta-analyses of relative caloric intake from fat, protein, carbohydrates and sugar in over 235,000 individuals. We identified 21 approximately independent lead SNPs. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease ( ≈ 0.15 − 0.5). Relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood poverty (|| ≈ 0.1 − 0.3). Overall, our results show that the relative intake of each macronutrient has a distinct genetic architecture and pattern of genetic correlations suggestive of health implications beyond caloric content

    Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization

    Get PDF
    Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area
    corecore