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Abstract: The identification of biomarkers associated with major depressive disorder (MDD) holds
great promise to develop an objective laboratory test. However, current biomarkers lack discriminative
power due to the complex biological background, and not much is known about the influence of
potential modifiers such as gender. We first performed a cross-sectional study on the discriminative
power of biomarkers for MDD by investigating gender differences in biomarker levels. Out of
28 biomarkers, 21 biomarkers were significantly different between genders. Second, a novel statistical
approach was applied to investigate the effect of gender on MDD disease classification using a
panel of biomarkers. Eleven biomarkers were identified in men and eight in women, three of which
were active in both genders. Gender stratification caused a (non-significant) increase of Area Under
Curve (AUC) for men (AUC = 0.806) and women (AUC = 0.807) compared to non-stratification
(AUC = 0.739). In conclusion, we have shown that there are differences in biomarker levels between
men and women which may impact accurate disease classification of MDD when gender is not taken
into account.

Keywords: major depressive disorder; gender; biomarker panel; ELISA; diagnostic methods;
quantile-based prediction; bio depression score

1. Introduction

Major depressive disorder (MDD) is a major cause of disability, economic burden and mortality
around the world [1]. Appropriate treatment early in the course of the disease has been shown to
improve prognosis [2] but requires timely and accurate diagnosis.

Traditionally, the diagnosis of major depressive disorder is based on a clinical interview in which
subjectively experienced and in part observable symptoms are identified and categorized according to
the Diagnostic and Statistical Manual of Mental Disorders (DSM) or the International Classification
of Diseases (ICD) [3,4]. However, the diagnosis of major depressive disorder as produced by these
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systems is a syndrome diagnosis that harbors high heterogeneity and shows considerable overlap with
other psychiatric disorders and physical disease [5]. For example, it is difficult to distinguish MDD
from disorders like bipolar disorder [6] and generalized anxiety disorder [7]; an objective laboratory
test based on specific biological mechanisms involved in MDD would therefore be very helpful to
improve early identification of patients with MDD.

The identification of biomarkers associated with MDD holds great promise for such a test [5,8].
These biomarkers reflect alterations in the neuro-immune and stress system, neuroplasticity, mineral
homeostasis, oxidative stress, endothelial function and other mechanisms [5,9–13]. To date, however,
no test based on a single biomarker has been developed because individual biomarkers cover only part
of these mechanisms and consequently lack sufficient discriminative power [5].

By using multiple markers, the discriminative power of a test is likely to be increased by covering
a broader range of the biological processes accompanying MDD [5,14,15]. Nevertheless, discriminative
power may still vary depending on individual patient characteristics [5,15–18].

One such characteristic is gender. MDD is two times more common in women than in men [19],
a difference that has been attributed to both psychological and biological differences [20]. Biological
explanations may be found in differences in sex hormones, the immune system, serotonergic activity,
salivary cortisol levels and structural and functional brain differences [21,22]. All of these may have an
impact on the discriminatory power of potential biomarkers for MDD.

To assess whether gender modifies the discriminatory power of potential biomarkers for MDD,
we performed a cross-sectional study with four steps. First, we assessed gender differences in serum
and urine levels of MDD associated biomarkers, irrespective of disease. Second, we studied overall
and gender-specific associations of individual biomarker levels with MDD. Third, we investigated the
prediction of MDD disease presence by a panel of biomarkers for MDD. Fourth, we examined whether
the prediction was affected by stratification by gender.

2. Results

2.1. Demographic Characteristics

Demographic and clinical parameters are presented in Table 1. As a result of matching, there was
no difference between the mean age of controls and MDD participants.

Table 1. Demographic and clinical characteristics of the study population.

Control MDD p-Value
Men Women Men Women

Group distribution 100 100 100 100 -

Age (Years) Mean 42.92 41.68 42.93 41.21
0.926 a

SD 10.65 10.92 10.69 11.69

Medication use
Yes 24 31 61 64

<0.0001 b
No 76 69 39 36

BMI (kg/m2) Mean 26.05 24.86 27.04 26.89
0.004 a

SD 3.39 3.93 4.57 5.33
a: Mann–Whitney U test (calculated mean control vs. mean major depressive disorder MDD); b: Chi-square test
(2 × 2).

Mean body mass index (BMI) was slightly higher in the MDD than in the control group, and
this difference was statistically significant (Table 1). The average number of symptoms (range) was
7.38 (0–9) for males and 7.73 (0–9) for females. Medication was more prevalent in MDD cases than
in controls, but no substantial differences between men and women were observed. Medicines used
belonged to one of the following categories; neuropsychotropic, cholesterol, cardiovascular, blockers,
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immune system, metabolic, corticosteroids, (para)sympathetic and other types of medication. Various
participants used multiple forms of medications.

2.2. Gender Differences in Biomarker Levels Irrespective of MDD Status

Serum and urine biomarker concentrations for men and women in the total cohort are presented in
Table 2. Out of 28 biomarkers analyzed, concentrations of nine biomarkers in serum significantly differed
between men and women and twelve in urine. In serum, concentrations of BDNF total, endothelin and
TNF receptor 2 were significantly higher in men, whereas concentrations of alpha-1-antitrypsin,
apolipoprotein A1, cortisol, leptin, prolactin and resistin were significantly higher in women.
In urine, concentrations of alpha-1-antitrypsin and midkine were significantly higher in males,
whereas concentrations of aldosterone, calprotectin, cGMP, cortisol, HVEM, isoprostane, leptin,
myeloperoxidase, resistin and substance P were significantly higher in females. From all significant
biomarkers, the effect sizes were the highest for leptin within serum and cGMP within urine. The lowest
effect sizes were found for alpha-1-antitrypsin within urine and BDNF total within serum.

Table 2. Gender-specific serum and urine biomarker concentrations in the total study population.

Biomarkers Units of
Measurment Males Females p (MW) p

(Levene′s) Effect Size * r

Serum

α1 anti-trypsin mg/L 547 ± 272 563 ± 249 <0.0001 0.132 0.28
Apolipoprotein A1 µg/mL 2170 ± 310 2280 ± 325 <0.0001 0.036 0.71

BDNF free ng/mL 18.9 ± 6.12 18.3 ± 5.76 0.623 0.567 -
BDNF Total ng/mL 36.7 ± 8.54 35.8 ± 8.16 0.574 0.025 0.02
Calprotectin µg/mL 2.28 ± 1.48 2.14 ± 1.52 0.167 0.606 -

Cortisol µg/dL 17.60 ± 5.87 18.40 ± 6.29 0.045 0.0167 0.26
EGF pg/mL 526 ± 171 513 ± 167 0.283 0.829 -

Endothelin pg/mL 1.60 ± 0.50 1.51 ± 0.45 0.010 0.336 0.26
Leptin ng/mL 67.3 ± 62.1 87.6 ± 60.8 <0.0001 <0.0001 1.13

Myeloperoxidase ng/mL 333 ± 198 314 ± 177 0.470 0.477 -
Prolactin µlU/mL 16.4 ± 14.9 20.1 ± 18.2 <0.0001 0.005 0.35
Resistin ng/mL 13.9 ± 4.45 14.5 ± 5.30 <0.0001 0.013 0.48

Thromboxane B2 ng/mL 22.0 ± 21.1 21.4 ± 21.1 0.524 0.930 -
TNF receptor 2 ng/mL 2.26 ± 0.53 2.16 ± 0.50 0.009 0.186 0.21

Urine

Aldosterone pg/mg 476 ± 218 677 ± 329 <0.0001 <0.0001 0.72
α1 anti-trypsin ug/mg 32.6 ± 87.6 30.6 ± 70.0 0.013 0.661 0.01

Calprotectin ng/mg 23.0 ± 68.3 106 ± 134 <0.0001 <0.0001 0.78
cGMP pmol/mg 34.0 ± 12.5 51.1 ± 18.1 <0.0001 <0.0001 1.09

Cortisol µg/mg 5.84 ± 3.25 7.11 ± 3.47 <0.0001 0.083 0.37
HVEM pg/mg 928 ± 178 10400 ± 214 <0.0001 0.045 0.57

Isoprostane ng/mg 0.16 ± 0.05 0.17 ± 0.07 0.291 0.018 0.19
Leptin pg/mg 0.37 ± 0.68 2.94 ± 6.63 <0.0001 <0.0001 0.54
LTB4 pg/mg 40.7 ± 14.6 44.9 ± 22.7 0.057 0.102 -

Midkine pg/mg 16.3 ± 23.2 9.39 ± 22.2 <0.0001 0.026 0.30
Myeloperoxidase ng/mg 2.30 ± 13.1 7.83± 17.3 <0.0001 0.0008 0.36

Resistin ng/mg 0.48 ± 0.36 0.71 ± 0.62 <0.0001 0.001 0.45
Substance P pg/mg 43.6 ± 15.1 47.3 ± 15.5 0.004 0.212 0.23

Thromboxane B2 ng/mg 2.86 ± 2.19 2.90 ± 2.20 0.806 0.573 -

* Effect size was only calculed for significant biomarkers; Urine biomarker concentrations are presented as the
creatine corrected concentrations.

2.3. Gender Differences in Biomarker Levels According to MDD Status

From all MDD cases, one can assume that they retain their MDD status irrespective of the day
of sample drawing (See Supplementary Figure S1 for the Kaplan–Meier analysis). Mean biomarker
concentrations according to MDD status are presented in Table 3 with and without gender stratification.
Mann–Whitney U and Levene’s test values are presented in Supplementary Table S1.
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Table 3. Serum and urine biomarker concentrations with and without gender stratification.

Biomarkers Units of
Measurement

No Gender Selection Men Women

MDD Control p-Value * MDD Control p-Value * MDD Control p-Value *

Serum

α1 anti-trypsin mg/L 547 ± 272 510 ± 195 p > 0.05 523 ± 298 471 ± 97.1 p > 0.05 575 ± 245 550 ± 252 p > 0.05
Apolipoprotein A1 mg/mL 2170± 310 2170 ± 350 p > 0.05 2073 ± 239 2050 ± 340 p < 0.05 2270 ± 340 2300 ± 310 p > 0.05

BDNF free ng/mL 18.9 ± 6.12 17.7 ± 4.82 p > 0.05 18.8 ± 6.08 17.8 ± 4.43 p > 0.05 19.1 ± 6.21 17.6 ± 5.17 p > 0.05
BDNF Total ng/mL 36.7 ± 8.54 35.2 ± 7.60 p > 0.05 36.8 ± 8.73 35.3 ± 6.35 p < 0.05 36.7 ± 8.47 35.0 ± 8.66 p > 0.05
Calprotectin µg/mL 2.28 ± 1.48 1.82 ± 1.09 p < 0.05 2.12 ± 1.15 1.79 ± 0.98 p < 0.05 2.42 ± 1.74 1.85 ± 1.20 p < 0.001

Cortisol µg/dL 17.6 ± 5.87 17.6 ± 5.40 p < 0.05 16.3 ± 5.04 17.4 ± 4.44 p > 0.05 19.0 ± 6.30 17.8 ± 6.21 p > 0.05
EGF pg/mL 526 ± 171 479 ± 157 p < 0.05 525 ± 179 459 ± 140 p < 0.05 527 ± 163 499 ± 170 p > 0.05

Endothelin pg/mL 1.60 ± 0.50 1.55 ± 0.47 p > 0.05 1.63 ± 0.55 1.62 ± 0.46 p > 0.05 1.54 ± 0.44 1.47 ± 0.46 p > 0.05
Leptin ng/mL 67.3 ± 62.1 53.2 ± 49.1 p < 0.01 33.9 ± 33.4 30.4 ± 32.7 p > 0.05 99.4 ± 66.2 75.8 ± 52.3 p < 0.05

Myeloperoxidase ng/mL 333 ± 198 282 ± 159 p < 0.05 322 ± 202 284 ± 170 p > 0.05 347 ± 196 280 ± 148 p < 0.05
Prolactin µlU/mL 16.4 ± 14.9 18.1 ± 16.9 p < 0.05 12.38 ± 7.37 16.4 ± 16.0 p < 0.01 20.4 ± 18.9 19.8 ± 17.5 p > 0.05
Resistin ng/mL 13.9 ± 4.45 12.8 ± 5.04 p < 0.01 12.97 ± 4.13 11.5 ± 3.53 p < 0.05 14.9 ± 4.57 14.1 ± 5.91 p < 0.05

Thromboxane B2 ng/mL 22.0 ± 21.1 21.2 ± 20.3 p > 0.05 25.3 ± 21.9 18.4 ± 15.8 p < 0.05 18.8 ± 20.0 23.9 ± 23.7 p > 0.05
TNF receptor 2 ng/mL 2.26 ± 0.53 2.16 ± 0.49 p < 0.05 2.29 ± 0.52 2.23 ± 0.51 p > 0.05 2.23 ± 0.53 2.09 ± 0.45 p > 0.05

Urine

Aldosterone pg/mg 590 ± 300 564 ± 292 p > 0.05 504 ± 222 449 ± 211 p > 0.05 675 ± 341 679 ± 315 p > 0.05
α1 anti-trypsin µg/mg 37.0 ± 93.4 37.0 ± 61.5 p > 0.05 19.2 ± 55.3 45.8 ± 109 p < 0.05 33.1 ± 66.4 28.2 ± 73.4 p > 0.05

Calprotectin ng/mg 76.0 ± 129 53.4 ± 96.3 p > 0.05 26.5 ± 77.0 19.6 ± 58.1 p > 0.05 126 ± 149 87.2 ± 114 p < 0.05
cGMP pmol/mg 44.5 ± 18.3 40.7 ± 17.0 p < 0.05 36.1 ± 13.6 32.0 ± 11.0 p < 0.05 52.9 ± 18.6 49.3 ± 17.5 p > 0.05

Cortisol µg/mg 6.71 ± 3.53 6.25 ± 3.29 p > 0.05 6.41 ± 3.52 5.27 ± 2.85 p < 0.01 7.01 ± 3.51 7.22 ± 3.41 p > 0.05
HVEM ng/mg 10.4 ± 2.17 9.32 ± 1.76 p < 0.01 9.76 ± 1.76 8.80 ± 1.67 p < 0.001 11.0 ± 2.36 9.38 ± 1.70 p < 0.01

Isoprostane ng/mg 0.18 ± 0.06 0.16 ± 0.06 p < 0.01 0.17 ± 0.05 0.16 ± 0.05 p > 0.05 0.19 ± 0.07 0.16 ± 0.06 p < 0.01
Leptin pg/mg 1.98 ± 5.74 1.32 ± 3.83 p > 0.05 0.41 ± 0.62 0.32 ± 0.72 p > 0.05 3.56 ± 7.78 2.32 ± 5.17 p > 0.05
LTB4 pg/mg 45.1 ± 23.6 40.5 ± 13.0 p > 0.05 42.2 ± 16.5 39.2 ± 12.3 p > 0.05 47.9 ± 28.7 41.8 ± 13.6 p > 0.05

Midkine pg/mg 12.7 ± 20.5 13.0 ± 25.1 p > 0.05 16.7 ± 24.6 15.8 ± 21.7 p > 0.05 8.58 ± 14.3 10.2 ± 27.8 p > 0.05
Myeloperoxidase ng/mg 6.37 ± 20.4 3.76 ± 8.37 p > 0.05 3.12 ± 17.7 1.48 ± 5.69 p > 0.05 9.62 ± 22.3 6.05 ± 9.87 p > 0.05

Resistin ng/mg 0.67 ± 0.64 0.51 ± 0.35 p < 0.05 0.53 ± 0.43 0.43 ± 0.26 p > 0.05 0.82 ± 0.77 0.60 ± 0.40 p < 0.01
Substance p pg/mg 46.6 ± 16.2 44.3 ± 14.5 p > 0.05 45.4 ± 16.4 41.8 ± 13.6 p > 0.05 47.8 ± 15.9 46.7 ± 15.0 p > 0.05

Thromboxane B2 ng/mg 3.10 ± 2.14 2.67 ± 2.22 p < 0.01 3.11 ± 2.12 2.62 ± 2.22 p > 0.05 3.09 ± 2.15 2.72 ± 2.22 p > 0.05

* For exact statistics see Supplementary Table S1; Urine biomarker concentrations are presented as the creatine corrected concentrations.
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In the total population, concentrations of eight biomarkers in serum and five biomarkers in
urine were significantly different between MDD and controls. Resistin was the only marker that
was significantly different in both serum and urine. When a gender stratification is applied, seven
biomarkers in serum and four in urine, in men, differed between MDD and the control group. Among
women, four biomarkers were different between MDD and the control group within serum, and another
four biomarkers differed in urine. From all biomarkers identified by applying gender stratification, six
biomarkers were only identified after gender stratification and were not identified as significant during
the initial analysis. There were three biomarkers (apolipoprotein A1, thromboxane B2, and BDNF total)
in serum and three biomarkers (calprotectin, cortisol, α1-antitrypsin) in urine. All serum markers were
significant for men. From the urine biomarkers, calprotectin was significant within women, whereas
cortisol and α1-antitrypsin were only significant within men.

A comparison of biomarker levels between men and women with MDD as presented in Table 4
revealed that out of 28 biomarkers, levels of 16 biomarkers were significantly different, seven within
serum and nine in urine.

Table 4. Differences in serum and urine biomarker concentrations between men and women with MDD.

p-Value

Serum Urine

Aldosterone - 0.000
α1 anti-trypsin 0.001 0.006

Apolipoprotein A1 0.000 -
BDNF free 0.759 -
BDNF total 0.738 -

Calprotectin 0.135 0.000
cGMP - 0.000

Cortisol 0.008 0.175
EGF 0.831 -

Endothelin 0.261 -
HVEM - 0.000

Isoprostane - 0.099
Leptin 0.000 0.000
LTB4 - 0.237

Midkine - 0.000
Myeloperoxidase 0.315 0.000

Prolactin 0.000 -
Resistin 0.001 0.001

Substance P 0.220
Thromboxane B2 0.009 0.708

TNF receptor 2 0.186 -

Concentration differences of biomarkers in bold are significant in at least one body fluid.

2.4. Gender Stratification and Biomarker Panel Selection with QBP

Table 5 represents quantile-based prediction (QBP) identified relevant biomarkers with and
without stratification. Twenty-eight out of 29 biomarkers were deemed relevant in the non-stratified
group. When stratified for gender, the QBP method identified different sets of relevant biomarkers
for each gender separately. Endothelin and leptin within serum, and myeloperoxidase and midkine
within urine, seemed to be more involved in women’s MDD pathophysiology, whereas apolipoprotein
A1, EGF and myeloperoxidase within serum and cortisol, substance P and thromboxane B2 seemed to
be more involved within men′s MDD pathophysiology. From all biomarkers identified within the
stratified groups by QBP, endothelin (serum), myeloperoxidase (urine) and midkine (urine) were only
identified by QBP and not previously using the Mann–Whitney test.
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Table 5. Overview of biomarkers actively contributing to the AUC of the bio depression score.

Biomarkers MDD Male MDD Female MDD

Serum

α1 anti-trypsin x x x
BDNF free x x x
BDNF total x x x
Calprotectin x x x

Cortisol x x x
Prolactin x x x
Resistin x x x

Thromboxane x x x
TNF receptor 2 x x x
Apolipoprotein

A1 x x

EGF x x
Myeloperoxidase x x

Endothelin x x
Leptin x x

Urine

Aldosteron x x x
α1 anti-trypsin x x x
Calproctectin x x x

cGMP x x x
HVEM x x x

Isoprostane x x x
Leptin x x x
LTB4 x x x

Resistin x x x
Cortisol x x

Substance P x x
Thromboxane x x

Myeloperoxidase x x
Midkine x

Under all conditions BMI is also an active bilmarker; Bold biomarkers are significantly different between men
and women.

2.5. BDS and Biomarker Panel Performance in the Total Group and That Stratified for Gender

The Bio Depression score BDS was calculated based on the optimized inclusion/exclusion criteria
for relevant biomarker tails. For the total group, criteria were set at 20%/6%, criteria for men were
set at 17%/6% and for women at 17%/7%. Permutation analysis with all 29 biomarkers (including
BMI) showed significant BDS discrimination for the non-stratified (p < 0.0001) as well as the stratified
biomarker panels (men p < 0.01, women p < 0.05). Figure 1 depicts the distribution of the bio depression
score (BDS) in the total study group as well as that stratified for gender. There was no significant
difference between the mean BDS scores of all MDD groups (non-stratified and stratified). Regression
analysis showed no direct interaction between gender, BDS score and MDD status. However, gender
seems to have a small confounding effect as its inclusion into the regression model increased the odds
ratio of the BDS score from 1177 (CI: 1.125–1.232) to 1205 (CI: 1.147–1.267).
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Figure 1. Bio depression score distribution with and without gender stratification. Each generated bio
depression score (BDS) is based on all the actively contributing biomarkers within the quantile-based
prediction (QBP) for each configuration.

2.6. Disease Classification with ROC Analysis

Without gender stratification, an Area Under Curve (AUC) of 0.739 was calculated. Subsequent
gender-specific AUC calculation (with the BDS based on the total group) resulted in an AUC of 0.760
for men and 0.751 for women. Stratified for gender and based on gender-specific criteria in the BDS,
the AUC in men (AUC = 0.806) and women (AUC = 0.807) increased, although not significantly (total
group BDS vs. men BDS, p = 0.089; total group BDS vs. women BDS, p = 0.090). Receiver operator
characteristic (ROC) curves of the non-stratified BDS and gender stratified groups are visualized in
Figure 2.

Without gender stratification, out of participants classified by BDS as having MDD, 37% were
correct whereas participants classified by BDS as control, 33% were correct. Correct identification
increased when gender stratification was applied. BDS correctly classified MDD within 40% of men
and 44% of women. The number of false positives increased within the women group, whereas that
within the men group decreased compared to no gender stratification. The percentage of false negatives
decreased when gender stratification was applied.
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Figure 2. Receiver operator characteristic (ROC) curves of the bio depression score obtained from
the combined active serum and urine biomarkers determined with the quantile-based prediction
with and without gender stratification and after randomization. AUCBDS =0.739 (sensitivity = 74%,
specificity = 66%) with 22 contributing biomarkers, AUCMale = 0.807 (sensitivity = 80%, specificity = 69%)
with 26 contributing biomarkers and AUCFemale = 0.806 (sensitivity = 89%, specificity = 59%) with
22 contributing biomarkers.

3. Discussion

The aim of the current paper was to investigate the effect of gender on the discriminative power
of potential biomarkers for MDD in serum and urine. First, we focused on gender differences in serum
and urine levels of MDD-associated biomarkers, irrespective of MDD, and found that there are several
differences in biomarker levels between men and women. Second, we focused on associations of
biomarker levels within MDD with and without gender stratification. Without gender stratification,
eight biomarkers in serum and five biomarkers in urine were significantly different between the MDD
and control group. When gender stratification was applied, differences concerned seven biomarkers in
serum and five in urine in men, whereas in women, differences regarded four in serum and four in urine.
Six of those biomarkers were only identified as different between MDD and control after applying
a gender stratification. Last, we investigated the effects of gender stratification on MDD disease
classification by a panel of biomarkers using a novel statistical method called quantile-based prediction.
This analysis revealed that when the QBP was applied for each gender separately, the predictive
accuracy improved as evident from an increase in AUC from 0.739 calculated for the total population
to 0.805 in men and 0.807 in women, although this increase was not statistically significant. To our
knowledge, this is the first study to investigate the modifying effects of gender on the discriminative
power of serum- and urine-based biomarkers for MDD.

Before we can accept the findings of our study, some limitations need to be addressed. One of the
major issues in the development of biomarker panels is that the performance of specific biomarkers
panels is measured against the disease state, which in turn is determined by the use of diagnostic
instruments. Although all diagnostic instruments are in principle clinically valid, they have their
limitations with respect to correctly diagnosing psychiatric disorders like MDD, which makes a
biomarker performance assessment as good as the reference tool which is used for the diagnosis.
Within the current study, we used the Mini-International Neuropsychiatric Interview (MINI), which
is a valid instrument for diagnosing DSM-IV disorders [23]. The sensitivity of the MINI is highest
for MDD, albeit with a high false-positive scoring rate [23–25], which increases the chance of falsely
linking biomarkers to MDD. To reduce the possibility of false-positive MDD classification by the MINI,
we selected participants with moderate-to-severe MDD as defined by the presence of at least some
disability (i.e., staying in bed due to psychopathology, being unable to do normal activity/work at all,
being unable to do the normal amount of activity/work or being unable to have normal quality in



Int. J. Mol. Sci. 2020, 21, 3039 9 of 16

activity/work. Another important factor is the time between the administration of the questionnaire
and drawing biological samples. For a direct correlation, a limited time between the questionnaire and
sample drawing is essential because levels of biomarkers are to be related to the disease state at that
moment. However, within the current study, the time between the MINI and drawing of biological
samples varied greatly, including in one participant, for which this time lag exceeded 512 days.
The difference in time makes it more difficult to directly correlate biological markers to disease status,
especially for subjects with a larger time difference. In these patients, one can question disease status
based on the duration of MDD [26]. However, in combination with data on the prevalence of MDD [27],
we estimated the chance of false positives in the cohort over time by using a Kaplan–Meier survival
model. Results showed that from all participants initially diagnosed with MDD, 90% are still depressed
at the time of biological sample drawing. Although 90% seems sufficiently high to assess correlations
between biomarker data and disease state, the 10% of misdiagnoses may have had an influence on the
performance of our biomarker panel. It is, however, unlikely to have had an effect on the 28 biomarkers
which we identified to be significantly different between men and women.

With respect to the observed biomarker differences between men and women irrespectively from
disease status, there are some points worth considering. For this analysis, we used biomarker data
from the combined group of controls and MDD patients, which could have skewed the individual
differences in biomarker levels leading to detecting gender differences, but which were actually absent.
Other factors that may have influenced the differences between men and women and also between
control and MDD are BMI, age and smoking. For both factors, it is known that they can influence
biomarker levels: leptin levels, for example, increase with increasing BMI [28], whereas age affects
multiple biomarkers of the Hypothalamic Pituitary Adrenal axis (HPA axis), the immune system and
neurotrophic factors, leading either to an increase or decrease of levels [29–31]. Although not explicitly
investigated within the current study, the previously observed positive correlation between BMI and
leptin levels seems to be supported by our data showing that higher BMI and higher leptin levels
within serum are associated with MDD (data not shown). The effects of age on biomarker levels were
not investigated within the current scope of the study, but participants were matched for age, therefore
limiting its potential influence. At the same time, this procedure may limit extrapolation to a larger
age group. As with age, smoking is another factor which was currently not within the scope of the
study but could potentially explain differences between men and woman as well as between controls
and MDD. It was previously shown that tobacco use increases plasma levels of BDNF within MDD
participants as compared to nonsmoking MDD participants [32]. Next to age, BMI and smoking, the
use of prescription medicine may have altered differences in biomarker levels. A recent study has
shown that prescription drugs can affect 1 to 250 different proteins/biomarkers and that even after
correction for other covariates such as gender, age and smoking, medicine use still accounts for a
substantial part of the observed variance in biomarker levels at the population level [33]. Another
factor which could have had substantial effect on the performance of our biomarker panel is the
Caucasian descent of our study population, which may limit extrapolation to other ethnic groups. In a
recent study, van Buel et al. (2019) showed that the AUC varies using the same set of biomarkers when
stratified for Caucasians and other ethnicities [15].

Previous research showed that one of the major issues in developing suitable biomarker panels
is finding biomarkers that have, when combined, sufficient discriminative power to be of diagnostic
value [5,34]. Ideally, these are biomarkers which are associated with a specific biological pathway.
However, due to the heterogeneous nature of MDD, it is hard to determine specific biological markers
for MDD, leading to discussions about the validity of a potential biomarker (and by extension
biomarker panels). With respect to the currently investigated biomarker panel, biomarkers were
included which were carefully selected and covered various biological mechanisms associated with
MDD (see Supplementary Table S2). Still, only a subset of biomarkers could be associated with
MDD within the study population. It could be that within the current population only a subset of
biological pathways were actively involved. The association between individual biomarkers and MDD
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is, however, not solely dependent on specific biological pathways but also on gender. By applying
gender stratification, a different pattern of associated biomarkers emerged which, interestingly, was
associated with different biological pathways. Our data suggest that biological mechanisms such as
the HPA axis/stress, neuroplasticity, endothelial dysfunction and neuro immune-inflammation are
more likely to be involved in male MDD pathophysiology, whereas a strong immune response and
endothelial dysfunction/oxidative stress are more likely to be involved in female MDD pathophysiology.
Gender-specific pathophysiology patterns are also supported by recent studies showing gender-specific
neuroimmune dysregulation [35], male-specific HPA axis dysregulation within MDD related to alcohol
abuse [36], and gender-specific differences at the level of immune responses [37].

After gender stratification, the AUC increased in our study. Albeit not significantly, the increase
of AUC after stratification suggests a better biomarker performance, which is also evidenced by
the change in contributing biomarkers. Within both genders, less biomarkers contributed more
to a higher AUC, suggesting that these biomarkers more closely reflect the underlying biological
pathways. Furthermore, a recent analysis performed by our group involving a larger cohort showed
that after gender stratification, the AUC increases with less contributing biomarkers compared to the
non-gender-stratified group. The difference in AUC remained after performing a 5-fold cross-validation
(see Supplementary Table S3) [38]. An advantage of the new advanced statistical method we used is
that we were able to utilize the full informative potential of our biomarkers with respect to underlying
biomarker dynamics and the contribution to disease status, thereby limiting the effects of the high
variability in biological pathways involved in MDD. The application of advanced statistical methods
is not new: others have shown that by utilizing potential information buried within biomarker data,
one can develop biomarker panels with high discriminative power [5,15]. This concept of identifying
contributing biomarkers is in line with our QBP method, which showed not only that with gender
stratification, different patterns of contributing biomarkers can be identified, but that this method also
eliminated non-relevant biomarkers which were previously identified as biomarkers associated with
MDD and vice versa.

In future studies utilizing QBP, transforming biomarker data before applying QBP might positively
affect performance. Papakostas et al. (2013) have previously shown that data transformation
improved their algorithm, resulting in the detection of MDD with high sensitivity and specificity [17].
The QBP method we used can be further optimized by selecting only relevant tails (disease or
non-disease-associated) from one biomarker, thereby reducing potential background noise which could
interfere with the analysis. Still, without performing extensive data transformations, our method could
quite well distinguish between MDD and controls.

In summary, we have shown that gender differences play an important role in not only biomarker
identification but also the development of biomarker panels for MDD. Gender stratification increased
the discriminative power of our QBP biomarker panel. Further, several points were mentioned which
could further increase the performance of our biomarker panel.

4. Materials and Methods

4.1. Study Design

The present study was a cross-sectional analysis of participant data and biological specimens (serum
and urine) from the Lifelines Cohort Study and biobank [39,40]. Lifelines is a large multi-disciplinary
prospective population-based cohort study examining risk factors for multifactorial diseases among
167,729 persons living in the north of the Netherlands. It employs a broad range of investigative
procedures in assessing the biomedical, socio-demographic, behavioral, physical and psychological
factors which contribute to the health and disease of the general population, with a special focus on
multi-morbidity and complex genetics. Data and biological specimens are collected every five years.
Baseline assessments took place between 2006 and 2013. The present analysis was performed using
data from the first two waves. The study complied with the principles enunciated in the Declaration of
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Helsinki and was approved by the medical ethics review committee of the University Medical Center
Groningen. Informed consent was acquired from all participants.

4.2. Study Population

The study population consisted of 200 participants with a current MDD diagnosis and 200 1:1 age-
and gender-matched controls from the total Lifelines cohort. Current MDD was assessed according
to DSM-IV-TR criteria with a standardized diagnostic interview based on the Mini-International
Neuropsychiatric Interview (MINI). Missing data were allowed when it did not interfere with the
establishment of a diagnosis (e.g., no data were required for the additional symptoms of MDD
when the core criteria were both absent). We selected only MDD subjects with at least one day of
disability a month, according to the four disability questions from the MINI (i.e., staying in bed due
to psychopathology, being unable to do normal activity/work at all, being unable to do the normal
amount of activity/work or being unable to have normal quality in activity/work). Medication use
was measured by asking the participants to bring their medication to the baseline interview where
the research assistant noted the corresponding Anatomic Therapeutic Chemical code (ATC). Controls
were selected when they reported no MDD symptoms and did not qualify for another MINI diagnosis.
Exclusion criteria included non-Caucasian descent, pregnancy, self-reported substance abuse disorder
(question: did you have contact with addiction care in the past 12 months) or self-reported physical
illness (i.e., kidney problems, cardiovascular problems, cancer, diabetes type 1 or 2, and thyroid
problems).

4.3. Biomarker Selection and Measurements

The selection of biomarkers was based on a previous study by our group [15] which identified
seven biomarkers in serum and eleven in urine. These biomarkers were supplemented with an
additional seven biomarkers in serum and three in urine, based on a literature search using various
combinations of the terms MDD, depression, biomarkers, urine, serum and pathophysiology. Table 6
shows an overview of biomarkers selected for the present study. Supplementary Table S3 shows
an overview of the biological mechanisms in which they are involved. The concentration of the
biomarkers as measured in urine are all expressed as the amount of biomarker relative to the amount
of creatinine, calculated as the ratio between the concentration in urine of the biomarker divided by
the concentration of creatinine. In addition, BMI was added as an extra non-matrix based biomarker
due to the high association between BMI and MDD [41].

Biomarker levels in serum and urine were determined by Enzyme-Linked Immunosorbent Assays
(ELISA). ELISA kits were obtained from various vendors (see Table 6). ELISA procedures were
performed using specific Standard Operating Procedures (SOPs) in which all experimental variables
are recorded to generate full experimental traceability for each run. Each SOP was set up according to
the manufacturer’s instructions with minor modifications (like adding extra calibrators, altered sample
dilutions). An ELISA plate washer (Biorad PW40) was used for all washing steps. TMB absorption
measurements were performed on a Microtiter plate reader (Thermo Multiskan Spectrum) at 450 nm
using 620 nm as a reference wavelength. Unknown biomarker concentrations were determined by the
use of a 4-parameter logistic regression (4-PL) model without weight factors [42]. In short, unknown
sample concentrations are calculated based on the optimal fit of the standard curve (based on the
Optical Density values) calculated within the 4-PL model. The application of a weight factor can be
applied to better fit unknown sample concentrations with a relatively low sample concentration since
these samples tend to fit worse compared to samples falling within the middle and upper parts of the
curve [42].

Since the ELISAs used are provided at the research and development level, performance parameters
such as calibration and reproducibility are not well controlled, potentially leading to biomarker
variations when measured over various runs. To account for this, biomarker testing was designed
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such as to maximally reduce uncontrolled variability by means of measuring all samples in one run for
each biomarker. The sample plate positions were randomized for each run.

Table 6. Biomarkers tested, the sample origin and manufacturer of the commercially available assay.

Biomarker Sample Manufacturer

1 Aldosterone Urine R&D Systems
2 alpha1 anti-trypsin Serum Immundiagnostik
3 alpha1 anti-trypsin Urine Immundiagnostik
4 Apolipoprotein Serum R&D Systems
5 Free BDNF * Serum R&D Systems
6 Total BDNF * Serum R&D Systems
7 Calprotectin Urine Hycult Biotech
8 Calprotectin Serum Hycult Biotech
9 cGMP Urine R&D Systems
10 Cortisol Urine Diagnostics Biochem Canada Inc.
11 Cortisol Serum Diagnostics Biochem Canada Inc.
12 EGF Serum R&D Systems
13 Endothelin-1 Serum R&D Systems
14 HVEM Urine R&D Systems
15 Isoprostane-2 Urine Northwest LLC
16 Leptin Urine R&D Systems
17 Leptin Serum R&D Systems
18 LTB4 Urine R&D Systems
19 Midkine Urine R&D Systems
20 Myeloperoxidase Serum R&D Systems
21 Myeloperoxidase Urine R&D Systems
22 Prolactin Serum Diagnostics Biochem Canada Inc.
23 Resistin Serum R&D Systems
24 Resistin Urine R&D Systems
25 Substance P Urine R&D Systems
26 Thromboxane Serum R&D Systems
27 Thromboxane Urine R&D Systems
28 TNFα receptor 2 Serum R&D Systems

* Free BDNF is unbound BDNF in serum only, whereas total BDNF is both free and bound BDNF in serum.

4.4. Statistical Analysis

Descriptive statistics were calculated for demographic and clinical characteristics of the study
population according to MDD status and gender. These characteristics were first compared between
MDD cases and controls and subsequently within MDD status between men and women.

Mean levels of biomarkers were first compared in the total population between men and women.
Thereafter, we assessed differences in these levels according to MDD status in the total group and
while stratifying for gender.

Categorical data were compared using chi-square tests, and continuous data including differences
in biomarker levels were compared using the non-parametric Mann–Whitney test because they showed
a non-normal distribution. The Levene’s test to assess heterogeneity was applied to determine
variance differences in each individual biomarker. A Kaplan–Meier analysis was performed in order
to investigate the effect of time between sample drawing and the initial diagnosis which in some
occasions was more than 30 days.

For the binary classification of MDD presence, a newly developed method called quantile-based
prediction (QBP) was used [15]. In short, QBP assigns scores to certain percentiles in the left and
right tails of empirical biomarker distributions. Tails in which a shift case versus control is observed
(differences between case and control) are assigned a value ,0, and tails where no difference is found
are assigned 0. The further the percentile is removed from the 50th, the higher the absolute value of
the score. For relevant tails (tail either represents disease or control) three percentiles (P10, P5 and
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P1, or P90, P95 and P99) are selected and receive a value of 1, 2 or 3, respectively. For each singular
biomarker, a positive or negative score is assigned such that a positive score is associated with MDD
and a negative score with control status. The sum of scores for all biomarkers is the Bio Depression
Score (BDS) for each participant based on the relevant tails. Next, we performed a receiver operator
characteristic (ROC) analysis by relating the score to the presence of MDD for various cut-offs. The AUC
was calculated as a cut-off-independent measure of discriminatory power of the score. The next step
involved optimization of the selection criteria of relevant biomarker tails by empirically making the
criteria for inclusion of relevant biomarkers more or less stringent. This was accomplished by varying
the threshold on the exceed ratio (ratio between the dominant and non-dominant group for each of the
three percentiles). By varying the threshold at the 90 and 95 percentile and the 5 and 10 percentile,
the AUC increased or decreased. The optimal criteria were set at the level where the AUC started to
decrease and are expressed as percentages. The AUCs of the total as well as the gender-specific groups
were determined based on the BDS score calculated by the QBP method including the total population.
For the gender-stratified analysis, the AUCs were determined based on the BDS estimated in men and
women separately.

The statistical significance of the discriminative power of the optimal BDS and calculated AUC
was assessed by performing a permutation analysis (approx. 2000 permutations) in which the case
control/control indicator was randomly distributed over the original biomarkers data generating
randomly generated AUCs. Possible interaction between gender and the BDS score in relation to
MDD status was assessed by testing the statistical significance of a product term gender*BDS as an
independent variable in a binary logistic regression model including the total population. For the
assessments of discriminative power, the Youden index was used.

The statistical significance level was set at 0.05, two-sided.
QBP analysis, calculation of ROC curves, the AUC permutation analysis and the accompanying

sensitivity and specificity was done in labview (see [15]) and in Medcalc version 18.11.3. Group
comparisons were performed within GraphPad prism 8 and IBM SPSS statistics 26. The binary logistic
regression was performed with IBM SPSS statistics 26.

5. Conclusions

We have demonstrated that at the gender level, numerous biomarker differences can be found not
only irrespective of disease but also between controls and MDD patients. We also have shown that
some of these biomarker differences are specific to either males or females and that without gender
differences taken into account, possible MDD candidate biomarkers can be missed. Next, we have
shown that gender differences likely play an important role in biomarker panel development in terms
of performance. Selecting for gender increased the performance of our biomarker panel in terms of
discriminative power, although not significantly. Our results indicate that there might be a need to
focus on gender differences, but more studies are needed to confirm.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/9/3039/
s1. Figure S1 Kaplan-Meier analysis of MDD status irrespective of day of sample drawing; Table S1 Mann whitney
U and levene’s test results; Table S2 overview of biological mechanisms of MDD and associated biomarkers; Table
S3 Comparison of results with and without gender separation within new cohort.
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