412 research outputs found

    Arando el campo de batalla; la guerra Inca, conquista y resiliencia

    Get PDF
    Inca warfare has been the subject of scholarly interest since the period of the Spanish conquest. Not only were the land and its peoples exotically diff erent from the Spanish interlopers but so were the many aspects of indigenous warfare. Th ough the indigenous population proved quick to adapt their methods and strategies to resist these foreign invaders, many of the underlying fundamentals took some time to adjust. Th is paper seeks to uncover both, aspects of the ideological framework which harnessed indigenous Andean strategies and tactics but also to present some of the more practical considerations with respect to territorial expansion, including how native strategy, tactics and beliefs fi rst developed and then adapted to the Spanish presence in the fi rst few decades of the conquest.La guerra inca ha sido objeto de interés intelectual desde el período de la conquista española. No solo porque la tierra y su gente eran exóticamente diferentes de los intrusos españoles, sino también sus muchos aspectos de la guerra indígena. Aunque la población indígena rápidamente adapto sus métodos y estrategias para resistir a estos invasores extranjeros, muchos de los fundamentos subyacentes tardaron en adaptarse. Este trabajo presentara algunos aspectos del marco ideológico que sustento las estrategias y tácticas indígenas andinas, mientras que igualmente describe algunas de las cuestiones más prácticas con respecto a la expansión territorial, incluyendo la forma en que las estrategias, tácticas y creencias nativas se desarrollaron y adaptaron a la presencia española en las primer décadas de la conquista.Fil: Meddens, Frank M.. University of Reading; Reino UnidoFil: Lane, Kevin John. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto de las Culturas. Universidad de Buenos Aires. Instituto de las Culturas; Argentin

    Gender Differences in Developing Biomarker-Based Major Depressive Disorder Diagnostics

    Get PDF
    The identification of biomarkers associated with major depressive disorder (MDD) holds great promise to develop an objective laboratory test. However, current biomarkers lack discriminative power due to the complex biological background, and not much is known about the influence of potential modifiers such as gender. We first performed a cross-sectional study on the discriminative power of biomarkers for MDD by investigating gender differences in biomarker levels. Out of 28 biomarkers, 21 biomarkers were significantly different between genders. Second, a novel statistical approach was applied to investigate the effect of gender on MDD disease classification using a panel of biomarkers. Eleven biomarkers were identified in men and eight in women, three of which were active in both genders. Gender stratification caused a (non-significant) increase of Area Under Curve (AUC) for men (AUC=0.806) and women (AUC=0.807) compared to non-stratification (AUC=0.739). In conclusion, we have shown that there are differences in biomarker levels between men and women which may impact accurate disease classification of MDD when gender is not taken into account

    Curcumin and major depression: A randomised, double-blind, placebo-controlled trial investigating the potential of peripheral biomarkers to predict treatment response and antidepressant mechanisms of change

    Get PDF
    A recent randomised, double-blind, placebo controlled study conducted by our research group, provided partial support for the efficacy of supplementation with a patented curcumin extract (500 mg, twice daily) for 8 weeks in reducing depressive symptoms in people with major depressive disorder. In the present paper, a secondary, exploratory analysis of salivary, urinary and blood biomarkers collected during this study was conducted to identify potential antidepressant mechanisms of action of curcumin. Pre and post-intervention samples were provided by 50 participants diagnosed with major depressive disorder, and the Inventory of Depressive Symptomatology self-rated version (IDS-SR30) was used as the primary depression outcome measure. Compared to placebo, 8 weeks of curcumin supplementation was associated with elevations in urinary thromboxane B2 (p<0.05), and substance P (p<0.001); while placebo supplementation was associated with reductions in aldosterone (p<0.05) and cortisol (p<0.05). Higher baseline plasma endothelin-1 (rs=−0.587; p<0.01) and leptin (rs=−0.470; p<0.05) in curcumin-treated individuals was associated with greater reductions in IDS-SR30 score after 8 weeks of treatment. Our findings demonstrate that curcumin supplementation influences several biomarkers that may be associated with its antidepressant mechanisms of action. Plasma concentrations of leptin and endothelin-1 seem to have particular relevance to treatment outcome. Further investigations using larger samples sizes are required to elucidate these findings, as the multiple statistical comparisons completed in this study increased the risk of type I errors

    The Importance of Small Fire Refugia in the Central Sierra Nevada, California, USA

    Get PDF
    Fire refugia – the unburned areas within fire perimeters – are important to the survival of many taxa through fire events and the revegetation of post-fire landscapes. Previous work has shown that species use and benefit from small-scale fire refugia (1 m2 to 1000 m2), but our understanding of where and how fire refugia form is largely limited to the scale of remotely sensed data (i.e., 900 m2 Landsat pixels). To examine the causes and consequences of small fire refugia, we field-mapped all unburned patches ≥1 m2 within a contiguous 25.6 ha forest plot that burned at generally low-to-moderate severity in the 2013 Yosemite Rim Fire, California, USA. Within the Yosemite Forest Dynamics Plot (YFDP), there were 685 unburned patches ≥1 m2, covering a total unburned area of 12,597 m2 (4.9%). Small refugia occurred in all fire severity classifications. Random forest models showed that the proportion of unburned area of 100 m2 grid cells corresponded to pre-fire density and basal area of trees, distance to the nearest stream, and immediate fire mortality, but the relationships were complex and model accuracy was variable. From a pre-fire population of 34,061 total trees ≥1 cm diameter at breast height (1.37 m; DBH) within the plot (1,330 trees ha-1), trees of all five of the most common species and those DBH \u3c30 cm had higher immediate survival rates if their boles were wholly or partially within an unburned patch (P ≤0.001). Trees 1 cm ≤ DBH \u3c10 that survived were located closer to the center of the unburned patch than the edge (mean 1.1 m versus 0.6 m; ANOVA; P ≤0.001). Four-year survival rates for trees 1 cm ≤ DBH \u3c10 cm were 58.8% within small refugia and 2.7% in burned areas (P ≤0.001). Species richness and the Shannon Diversity Index (SDI) were associated with unburned quadrats in NMDS ordinations 3 years post-fire. Burn heterogeneity in mixed-conifer forests likely exists at all scales and small refugia contribute to diversity of forest species and structures. Thus, managers may wish to consider scales from 1-m2 to the landscape when designing fuel reduction prescriptions. The partial predictability of refugia location suggests that further work may lead to predictive models of refugial presence that have considerable potential to preserve ecological function or human habitation in fire-frequent forests

    Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling.

    Get PDF
    Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality

    Systematic analysis of chromatin interactions at disease associated loci links novel candidate genes to inflammatory bowel disease

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have revealed many susceptibility loci for complex genetic diseases. For most loci, the causal genes have not been identified. Currently, the identification of candidate genes is predominantly based on genes that localize close to or within identified loci. We have recently shown that 92 of the 163 inflammatory bowel disease (IBD)-loci co-localize with non-coding DNA regulatory elements (DREs). Mutations in DREs can contribute to IBD pathogenesis through dysregulation of gene expression. Consequently, genes that are regulated by these 92 DREs are to be considered as candidate genes. This study uses circular chromosome conformation capture-sequencing (4C-seq) to systematically analyze chromatin-interactions at IBD susceptibility loci that localize to regulatory DNA. RESULTS: Using 4C-seq, we identify genomic regions that physically interact with the 92 DRE that were found at IBD susceptibility loci. Since the activity of regulatory elements is cell-type specific, 4C-seq was performed in monocytes, lymphocytes, and intestinal epithelial cells. Altogether, we identified 902 novel IBD candidate genes. These include genes specific for IBD-subtypes and many noteworthy genes including ATG9A and IL10RA. We show that expression of many novel candidate genes is genotype-dependent and that these genes are upregulated during intestinal inflammation in IBD. Furthermore, we identify HNF4α as a potential key upstream regulator of IBD candidate genes. CONCLUSIONS: We reveal many novel and relevant IBD candidate genes, pathways, and regulators. Our approach complements classical candidate gene identification, links novel genes to IBD and can be applied to any existing GWAS data

    The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

    Get PDF
    Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations) in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the western United States.National Science Foundation (U.S.) (ATM- 0929282)National Science Foundation (U.S.) (ATM-0939021)National Science Foundation (U.S.) (ATM-0938940)United States. Dept. of Energy. Office of Scienc

    Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling

    No full text
    Drought has promoted large‐scale, insect‐induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on‐going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: 1) there is a trade‐off in tree carbon investment between primary and secondary metabolites (e.g. growth vs. defence); 2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and 3) implementing conifer‐bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large‐scale vegetation models, the under‐representation of insect‐induced tree mortality
    corecore