69 research outputs found
Space-time evolution of hadronization
Beside its intrinsic interest for the insights it can give into color
confinement, knowledge of the space-time evolution of hadronization is very
important for correctly interpreting jet-quenching data in heavy ion collisions
and extracting the properties of the produced medium. On the experimental side,
the cleanest environment to study the space-time evolution of hadronization is
semi-inclusive Deeply Inelastic Scattering on nuclear targets. On the
theoretical side, 2 frameworks are presently competing to explain the observed
attenuation of hadron production: quark energy loss (with hadron formation
outside the nucleus) and nuclear absorption (with hadronization starting inside
the nucleus). I discuss recent observables and ideas which will help to
distinguish these 2 mechanisms and to measure the time scales of the
hadronization process.Comment: 6 pages, 4 figures. Based on talks given at "Hot Quarks 2006",
Villasimius, Italy, May 15-20, 2006, and at the "XLIV internataional winter
meeting on nuclear physics", Bormio, Italy, Jan 29 - Feb 5, 2006. To appear
in Eur.Phys.J.
Observation of exclusive DVCS in polarized electron beam asymmetry measurements
We report the first results of the beam spin asymmetry measured in the
reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry
with a sin(phi) modulation is observed, as predicted for the interference term
of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The
amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and
leading-twist pQCD, the alpha is directly proportional to the imaginary part of
the DVCS amplitude.Comment: 6 pages, 5 figure
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
Photoproduction of mesons off nuclei
Recent results for the photoproduction of mesons off nuclei are reviewed.
These experiments have been performed for two major lines of research related
to the properties of the strong interaction. The investigation of nucleon
resonances requires light nuclei as targets for the extraction of the isospin
composition of the electromagnetic excitations. This is done with quasi-free
meson photoproduction off the bound neutron and supplemented with the
measurement of coherent photoproduction reactions, serving as spin and/or
isospin filters. Furthermore, photoproduction from light and heavy nuclei is a
very efficient tool for the study of the interactions of mesons with nuclear
matter and the in-medium properties of hadrons. Experiments are currently
rapidly developing due to the combination of high quality tagged (and
polarized) photon beams with state-of-the-art 4pi detectors and polarized
targets
Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV
The three-body photodisintegration of 3He has been measured with the CLAS
detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV
and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first
time to cover a wide momentum and angular range for the two outgoing protons.
Three kinematic regions dominated by either two- or three-body contributions
have been distinguished and analyzed. The measured cross sections have been
compared with results of a theoretical model, which, in certain kinematic
ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications:
removed 2 figures, improvements on others, a few minor modifications to the
tex
A Bayesian analysis of pentaquark signals from CLAS data
We examine the results of two measurements by the CLAS collaboration, one of
which claimed evidence for a pentaquark, whilst the other found no
such evidence. The unique feature of these two experiments was that they were
performed with the same experimental setup. Using a Bayesian analysis we find
that the results of the two experiments are in fact compatible with each other,
but that the first measurement did not contain sufficient information to
determine unambiguously the existence of a . Further, we suggest a
means by which the existence of a new candidate particle can be tested in a
rigorous manner.Comment: 5 pages, 3 figure
eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV
Differential cross sections for the reaction gamma p -> eta-prime p have been
measured with the CLAS spectrometer and a tagged photon beam with energies from
1.527 to 2.227 GeV. The results reported here possess much greater accuracy
than previous measurements. Analyses of these data indicate for the first time
the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710)
resonances, known to couple strongly to the eta N channel in photoproduction on
the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure
A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments
We measured the inclusive electron-proton cross section in the nucleon
resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2
with the CLAS detector. The large acceptance of CLAS allowed for the first time
the measurement of the cross section in a large, contiguous two-dimensional
range of Q**2 and x, making it possible to perform an integration of the data
at fixed Q**2 over the whole significant x-interval. From these data we
extracted the structure function F2 and, by including other world data, we
studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate
higher twist contributions. The small statistical and systematic uncertainties
of the CLAS data allow a precise extraction of the higher twists and demand
significant improvements in theoretical predictions for a meaningful comparison
with new experimental results.Comment: revtex4 18 pp., 12 figure
Measurement of the Deuteron Structure Function F2 in the Resonance Region and Evaluation of Its Moments
Inclusive electron scattering off the deuteron has been measured to extract
the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer
(CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement
covers the entire resonance region from the quasi-elastic peak up to the
invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum
transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous
measurements of the proton structure function F2 and cover a similar
two-dimensional region of Q2 and Bjorken variable x. Determination of the
deuteron F2 over a large x interval including the quasi-elastic peak as a
function of Q2, together with the other world data, permit a direct evaluation
of the structure function moments for the first time. By fitting the Q2
evolution of these moments with an OPE-based twist expansion we have obtained a
separation of the leading twist and higher twist terms. The observed Q2
behaviour of the higher twist contribution suggests a partial cancellation of
different higher twists entering into the expansion with opposite signs. This
cancellation, found also in the proton moments, is a manifestation of the
"duality" phenomenon in the F2 structure function
Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments
We report on the measurement of inclusive electron scattering off a carbon
target performed with CLAS at Jefferson Laboratory. A combination of three
different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an
invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum
transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous
measurements of the inclusive electron scattering off proton and deuteron,
which cover a similar continuous two-dimensional region of Q2 and Bjorken
variable x, permit the study of nuclear modifications of the nucleon structure.
By using these, as well as other world data, we evaluated the F2 structure
function and its moments. Using an OPE-based twist expansion, we studied the
Q2-evolution of the moments, obtaining a separation of the leading-twist and
the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist
contributions to the F2 moments exhibits the well known EMC effect, compatible
with that discovered previously in x-space. The total higher-twist term in the
carbon nucleus appears, although with large systematic uncertainites, to be
smaller with respect to the deuteron case for n<7, suggesting partial parton
deconfinement in nuclear matter. We speculate that the spatial extension of the
nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure
- …
