7 research outputs found

    Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science

    Full text link
    SPHEREx is a proposed SMEX mission selected for Phase A. SPHEREx will carry out the first all-sky spectral survey and provide for every 6.2" pixel a spectra between 0.75 and 4.18 ÎŒ\mum [with R∌\sim41.4] and 4.18 and 5.00 ÎŒ\mum [with R∌\sim135]. The SPHEREx team has proposed three specific science investigations to be carried out with this unique data set: cosmic inflation, interstellar and circumstellar ices, and the extra-galactic background light. It is readily apparent, however, that many other questions in astrophysics and planetary sciences could be addressed with the SPHEREx data. The SPHEREx team convened a community workshop in February 2016, with the intent of enlisting the aid of a larger group of scientists in defining these questions. This paper summarizes the rich and varied menu of investigations that was laid out. It includes studies of the composition of main belt and Trojan/Greek asteroids; mapping the zodiacal light with unprecedented spatial and spectral resolution; identifying and studying very low-metallicity stars; improving stellar parameters in order to better characterize transiting exoplanets; studying aliphatic and aromatic carbon-bearing molecules in the interstellar medium; mapping star formation rates in nearby galaxies; determining the redshift of clusters of galaxies; identifying high redshift quasars over the full sky; and providing a NIR spectrum for most eROSITA X-ray sources. All of these investigations, and others not listed here, can be carried out with the nominal all-sky spectra to be produced by SPHEREx. In addition, the workshop defined enhanced data products and user tools which would facilitate some of these scientific studies. Finally, the workshop noted the high degrees of synergy between SPHEREx and a number of other current or forthcoming programs, including JWST, WFIRST, Euclid, GAIA, K2/Kepler, TESS, eROSITA and LSST.Comment: Report of the First SPHEREx Community Workshop, http://spherex.caltech.edu/Workshop.html , 84 pages, 28 figure

    The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts for 0.2-2 microns wavelength

    Get PDF
    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Ys), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 square arcmin at 0.2-1.7 {\mu}m in wavelength at 0.07-0.15" FWHM resolution and 0.090" Multidrizzled pixels to depths of AB\simeq 26.0-27.0 mag (5-{\sigma}) for point sources, and AB\simeq 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used; and c) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0.07-0.15" FWHM resolution of HST/WFC3 and ACS makes star- galaxy separation straightforward over a factor of 10 in wavelength to AB\simeq 25-26 mag from the UV to the near-IR, respectively.Comment: 51 pages, 71 figures Accepted to ApJS 2011.01.2

    The <em>Hubble Space Telescope</em> wide field camera 3 early release science data:Panchromatic faint object counts for 0.2-2ÎŒm wavelength

    No full text
    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098M (Y-s), F125W (J), and F160W (H) with 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BViz filters, these panchromatic 10-band ERS data cover 40-50 arcmin(2) at 0.2-1.7 mu m in wavelength at 0 ''.07-0 ''.15 FWHM resolution and 0 ''.090 Multidrizzled pixels to depths of AB similar or equal to 26.0-27.0 mag (5 sigma) for point sources, and AB similar or equal to 25.5-26.5 mag for compact galaxies. In this paper, we describe (1) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics, (2) the procedure of generating object catalogs across the 10 different ERS filters, and the specific star-galaxy separation techniques used, and (3) the reliability and completeness of the object catalogs from the WFC3 ERS mosaics. The excellent 0 ''.07-0 ''.15 FWHM resolution of HST/WFC3 and ACS makes star-galaxy separation straightforward over a factor of 10 in wavelength to AB similar or equal to 25-26 mag from the UV to the near-IR, respectively. Our main results are: (1) proper motion of faint ERS stars is detected over 6 years at 3.06 +/- 0.66 mas year(-1) (4.6 sigma), consistent with Galactic structure models; (2) both the Galactic star counts and the galaxy counts show mild but significant trends of decreasing count slopes from the mid-UV to the near-IR over a factor of 10 in wavelength; (3) combining the 10-band ERS counts with the panchromatic Galaxy and Mass Assembly survey counts at the bright end (10 mag less than or similar to AB less than or similar to 20 mag) and the Hubble Ultra Deep Field counts in the BVizY(s)JH filters at the faint end (24 mag less than or similar to AB less than or similar to 30 mag) yields galaxy counts that are well measured over the entire flux range 10 mag less than or similar to AB less than or similar to 30 mag for 0.2-2 mu m in wavelength; (4) simple luminosity+density evolution models can fit the galaxy counts over this entire flux range. However, no single model can explain the counts over this entire flux range in all 10 filters simultaneously. More sophisticated models of galaxy assembly are needed to reproduce the overall constraints provided by the current panchromatic galaxy counts for 10 mag less than or similar to AB less than or similar to 30 mag over a factor of 10 in wavelength.</p
    corecore